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What are we after?
Understanding of text or audio/music/image corpora
 Large-scale machine learning for matching, annotation, 

information extraction
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Music Genre
Artist
etc

AnnotationAudio/Music Text

Bio-informatics

This talk: annotation, information extraction for NLP
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Natural Language Processing Tasks

Classical tasks:
 Part-of-speech (POS) tagging: noun, verb, adverb,...
 Chunking: noun phrase, verb phrase,...
 Named Entity Recognition (NER): person, company, 

location,...
 Semantic role labeling: object, subject, action, ...
Practical Information Extraction tasks:

relationship extraction, text summarization, 
supporting/evidence sentence extraction, etc

Focus on practical tasks of understanding bio-medical texts 
(normal, e.g., Wiki-English, is a prior work)
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Why need natural language 
processing (NLP) for bio-medical 
literature (BioNLP)

MEDLINE: 70 million queries monthly, > 17M articles
(wikipedia: 3M articles)
 Impossible to annotate manually

Linking text to databases
 Human curators struggle to 
     process scientific literature
 Efficient access to discoveries/ 
      facts/events crucial in sciences
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Goal & Challenges

 Goal: Automatic annotation and information extraction 
from bio-medical texts

– Bio-Entity Recognition,
– Relationship Extraction 

           from biomedical texts
 Challenges:

– annotated data is scarce
– millions of unannotated articles (e.g., MEDLINE)
– Learn from unlabeled data with very limited prior 

knowledge



03/18/10 6
6

Three Tasks: Practical information 
extraction /retrieval problems

 Bio-Entity tagging 
   (genes, proteins, etc)

 Protein-Protein Interaction
   (PPI) extraction

 PPI Article retrieval from abstracts
(relevant article detection)
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 State-of-the-art learning systems for three BioNLP tasks 
– Step I: Use semi-supervised and unsupervised methods for 

learning word-level representations (feature vectors)
• (1) Word-Class distribution (WCD) patterns
• (2) Word Co-occurrence patterns 
• (3) Language Model derived word embedding

– Step II: Use word codebooks (exemplar words) for word 
embedding

Preview of Results

SM     binds   RNA      in        vitro ...
Feature vectors for each word

#features

Input sentence

Codewords
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Step I (3) Unsupervised: Language Model

 Language Model: train low dimensional embedding for 
words (semantically similar words have close 
embeddings)

– Positive examples: Text window extracted from unlabeled 
corpus (PubMed abstracts 95-present, 1.3G words)

• trio and Abl cooperate in regulating axon
– Negative examples: Text window with substitution of the middle 

word by a random word
• trio and Abl cooperate in regulating axon

random

Collobert  & Weston, ICML2008, A Unified Architecture for Natural 
Language Processing: Deep Neural Networks with Multitask Learning
Collobert & Weston & Kuksa, journal article (in submission)
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Step I (2) Unsupervised: Word-Cooccurrence

 Word Co-Occurrence: group together words 
with similar (co)occurrence patterns (e.g., 
protein, kinase, pkc)

   
    Pairwise co-occurrence

   matrix (text window-based!)

[w_{-k} ... w_{0} ... w_{+k}]
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 WCDL: Simple and scalable semi-supervised feature 
learning
– Use model trained on labeled examples to estimate 

(predicted) word-class distribution (WCD) patterns on 
unlabeled data

Step I (1) Semi-Supervised: Word-Class 
Distribution Learning (WCDL)

– Add WCD features to the feature set and retrain
Qi, Kuksa, Collobert, Sadamasa, Kavukcuoglu & Weston, ICDM 2009 
 "Semi-Supervised Sequence Labeling with Self-Learned Features"
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Basic WCDL (Word Class Distribution Learning)
 Basic word-class distribution feature (estimated on 

unlabeled data)
      wcd(word) = [P(class1|word)  ...  P(classn|word)]

          (for n-class classification problem)
       P(classi|word) = #times word is observed in class-i   / 

                                      total #times word is observed in the data

 Example: Using IOBES (inside, outside, begin, end, 
single) representation for the sequence labeling problem

       wcd(word) = [P(I|word), P(O|word), ... , P(S|word)]  

 wcd features from neighboring words are highly 
informative for the word to be labeled  
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Extended WCDL

 Estimate likelihoods for words to be around (i.e. before,  
after) the named entities
 Targets unknown name recognition problem

 Extended WCD feature:
     extWCD(word) =

              [P(c_i|word), P(before c_i|word), P(after c_i|word)]

 Improves recognition on previously unseen 
words/names 
 Effective improvements under transductive setting as well
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General WCDL

 Estimate likelihoods of label sequences for words 
 Captures word context better
 Targets unknown name recognition problem

 General WCD feature:
     generalWCD(word) =

        [P(c_{-k}, c_{-k+1},..., c_{-1}, c_{0},c_{1},...,c_{k}|word)]

 Improves recognition on previously unseen 
words/names 

label sequence 
(n-gram)
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Word Codebook Learning (WCL)

 Codebook learning

Word --> Cluster Id 
(codebook!)

Kuksa & Qi, SDM 2010  "Semi-Supervised Bio-Named Entity 
Recognition with Word-Codebook Learning"
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Exemplar Word Embedding

 Query: protein (65)

  SSI (supervised semantic indexing),
Bing et al, CIKM 2009; Kuksa et al, ACL 2010 

Co-occurrence WCDL LM SSI
protein protein protein protein
kinase family receptor expression

pkc mutant ligand gene
ampk antibody molecule cell

tyrosine mutants polypeptide pNUMBER
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Experiment I: Gene Mention Prediction (bioNER)

 Find gene names in text
– Input text: Phenotypic analysis demonstrates that trio and Abl 

cooperate in regulating axon outgrowth...
– Output gene names: trio, Abl

 Data set:
– BioCreative II competition 

• Train: 15K sentences from Medline abstracts
• Test: 5K sentences

– Unlabeled: 60M sentences (~1.3G words) from Pubmed 
(compare: Wikipedia 0.6G words)

 Evaluation:
– precision, recall, F1 for gene names (phrases)



03/18/10 17
17

Gene Mention Prediction:
(1) Co-Occurrence

 Compute Dice scores between words from 
Co-occurrence matrix 

 Cluster words using with affinity 
propagation (AP) method (Frey et al, 2007)

 Baseline (CRF):

 +Co-occurrence: Precision Recall F1 Improvement
88.52 79.42 83.72 +1.7 (2.1 %)

Precision Recall F1
87.84 76.92 82.02
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Gene Mention Prediction:
(2) Basic WCDL

 Estimate WCD features for words on Medline 
abstracts  using pre-trained supervised model

 Cluster WCD features with Vector Quantization (256 

clusters)
 Baseline:

 +Basic WCDL:

 (Compare with co-occurrence):
Precision Recall F1 Improvement

88.52 79.42 83.72 +1.7 (2.1 %)

Precision Recall F1
87.84 76.92 82.02

Precision Recall F1 Improvement
87.55 80.76 84.01 +1.99 (2.4 %)
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Gene Mention Prediction:
(2) Extended WCDL

 Estimate extended WCD features on 
Medline abstracts using pre-trained 
supervised model (same model as in basic 
WCDL case)

 +Basic WCDL:

 +Extended WCDL:
 +General WCDL:

Precision Recall F1 Improvement
88.88 81.89 85.24 +3.22 (3.9 %)

Precision Recall F1 Improvement
87.55 80.76 84.01 +1.99 (2.4 %)

Precision Recall F1 Improvement
89.58 82.93 86.12 +4.08 (5 %)
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Gene Mention Prediction:
(3) Language Model
 Train Language Model on Medline abstracts

– 1.3G words (60M sentences)

 Use ~40K dictionary
 Cluster with VQ (1024 clusters)
 +Language Model:

 Compare with General WCDL:

Precision Recall F1 Improvement
89.19 82.89 85.93 +3.91 (4.8 %)

(2 months for 100K words 

on a single CPU))

(hours)) Precision Recall F1 Improvement
89.58 82.93 86.12 +4.08 (5 %)
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Gene Mention Prediction:
multiple WCL (Language Model + WCDL)
 Use both Language Model and extended 

WCDL 
 LM + extended WCDL:

 Extended WCDL alone:

 LM alone:

Precision Recall F1 Improvement
90.12 84.39 87.16 +5.14 (6.3 %)

Precision Recall F1 Improvement
88.88 81.89 85.24 +3.22 (3.9 %)

Precision Recall F1 Improvement
89.19 82.89 85.93 +3.91 (4.8 %)
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Gene Mention Prediction:
Language Model + WCDL + (word features)

 Use word features (prefix, suffix) with 
Language Model and extended WCDL 

 LM + extended WCDL with word features:

 LM + extended WCDL (no extra word features):

 Previous best system with (many more) word 
features + POS, etc: F1 86.3

Precision Recall F1 Improvement
90.7 85.19 87.86 +5.84 (7.1 %)

Precision Recall F1 Improvement
89.71 83.34 86.41 +4.39 (5.4 %)
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Gene Mention Prediction:
adding domain knowledge

 Use NCBI human gene list (0.5M names)
 Use UNIPROT gene/protein names (1M 

names)
 LM + extended WCDL + gene names:

 Compare with LM + extended WCDL

Precision Recall F1 Improvement
90.74 85.74 88.17 +6.15 (7.5 %)

Precision Recall F1 Improvement
90.7 85.12 87.86 +5.84 (7.1 %)
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Gene Mention Prediction:
Transductive setting

 Estimate WCD features on test set using 
model trained on a train set (fast, ~minutes)

 Extended WCDL (transductive):

 Compare with extended WCD (Pubmed):

 Compare with LM (Pubmed):

Precision Recall F1 Improvement
88.77 81.01 84.73 +2.71 (3.3 %)

Precision Recall F1 Improvement
88.88 81.89 85.24 +3.22 (3.9 %)

Precision Recall F1 Improvement
89.19 82.89 85.93 +3.91 (4.8 %)
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Gene Mention Prediction Results

Model Precision Recall F1 Improvement

Baseline (Supervised) 87.84 76.92 82.02

Co-occurrence 88.52 79.42 83.72 +1.7 (2.07 %)

Word-Class-Distributions 88.88 81.89 85.24 +3.22 (3.9 %)

Language Model 89.19 82.89 85.93 +3.91 (4.8 %)

Language Model + Word-Class-Distribution 89.71 83.34 86.41 +4.39 (5.4 %)

*Language Model 90.31 84.54 87.33 +5.31 (6.5 %)

*Language Model+Word-Class-Distribution 90.57 84.93 87.66 +5.64 (6.9 %)

*Language Model+Word-Class+Gene Names 90.74 85.74 88.17 +6.15 (7.5 %)

Previous best system: 87.21 F1 (complex combination of many classifiers with many 
more features, dictionaries, etc)

State-of-the-art gene name recognition performance
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Methods Comparison
 WCDL: single pass over data + (re)training

– task-focused
– Time: ~few hours on Pubmed (1.3G words), 

~minutes in transductive setting

 Co-occurrence: single pass over data (~ few hours 
on Pubmed)

– Task-independent
– Domain-sensitive

 LM: multiple passes over data (~ 2 month on 
Pubmed)

– Task-independent
– Domain-sensitive: Wiki-English vs Biomedical
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Gene Mention Prediction (bioNER):
Summary of Results

 State-of-the performance with word features 
only (87.86 F1 score),

– 30% reduction in FN, 15% reduction in FP
 Single classifier (as opposed to complex 

combinations/cascades used by top systems)
 Complex WCDL can be combined with simple 

models (online prediction)
 System performance can be further improved 

with better unknown name detection
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 Interaction Article Retrieval: Identify 
relevant articles about PPI from abstracts

 PPI relation recognition: extract pairs of 
interacting proteins from sentences
– Example: The protein product of c-cbl proto-

oncogene is known to interact with several 
proteins, including Grb2, Crk, and PI3 kinase, 
and is though to regulate signaling …

• Interacting pairs: (c-cbl, Grb2), (c-cbl, Crk), etc.

Experiment II & III: Protein-Protein 
Interaction (PPI) Recognition
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 Use fixed-length feature vectors to 
   represent arbitrary long strings X
 Examples:

– Word kernel: dot-product of individual 
          word counts

– Spectrum kernel: dot-product of k-word counts
– Mismatch kernel: dot-product of k-word counts with 

inexact matching of k-words 
– Gapped kernel: dot-product of (non-contiguous) k-

word counts with gaps allowed between words

String Kernel for PPI recognition 
(relationship extraction)

Kuksa, Huang, and Pavlovic, NIPS2008, “Scalable Algorithms for String 
Kernels with Inexact Matching”
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String Kernels with Unlabeled data 
(open research)

 Use word index (codeword) from the codebook 
to represent the word

– word -> cluster id

 Evaluate string kernel over codebook 
representation of a sentence instead of using 
words directly

– <word1 cluster id> <word2 cluster id> ... <wordn cluster id>
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Experiment II:  PPI relation 
extraction from sentences
 Data:  AIMed dataset

– 951 positive examples, 3075 negative
– 10-fold cross-validation
– Relation data generation: for a sentence with n 

entities create C(n,2) copies with only 2 
entities

 Task: extract all interacting pairs from given 
sentence (assuming protein/gene name 
labeling is known)

 Evaluation: F1 score
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Experiment II : PPI relation extraction 
from sentences
Results:
Method Precision Recall F1

WCL (LM) 61.18 67.92 64.33
WCL (SSI) 60.68 69.08 64.54
Baseline 1: (best)
Multiple kernel, multiple parser 
combination (Makoto et al, 
2008)

57.8 66.11 61.4

Baseline 2:
Dependency and deep parsers 
(Miyao et al, 2008)

54.9 65.5 59.5
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Experiment III : Interaction Article retrieval 
(relevant article detection)

 Data: BioCreative II competition
– Train: 3536 negative, 1959 positive abstracts
– Test: 338 positive, 339 negative

 Binary classification: identify abstracts for 
articles with experimental evidence for 
protein-protein interaction (not just any 
interaction)

 Evaluation: F1 score, Accuracy
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Experiment III:  Interaction Article retrieval 
(relevant article detection)

Results

 Current best system: F1 78.00 (many more 
hand-crafted & syntactic features)

Method Precision Recall F1
WCL (LM) 76.06 84.62 80.11

WCL (SSI) 73.59 84.91 78.85

Baseline 1:(best)
BioCreative II

70.31 87.57 78.00
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Conclusions & Future Work

State-of-the-art learning systems for entity tagging 
and relationship extraction

  Learning word representations from unlabeled data 
improves prediction/extraction performance

  Words only, NO syntactic or other complex features
 End-to-end systems (robust, no cascades)
  Future extensions:

–  learning from weakly labeled data (citation graphs, 
keyword annotations, etc)

–  other tasks (article summarization, evidence 
sentence retrieval)
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Conclusions & Future Work

Search, information retrieval, multi-modal data analysis
 Efficient means (algorithms, models) for analysis and 

modeling of complex data (text, image, multimedia)
 Large scale matching, annotation, information 

extraction
 High-dimensional data indexing, embedding  
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BACKUP SLIDES
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Related Work (BioNLP)
• Gene mention recognition

• Dictionary based
• Rule based
• Machine learning systems (CRF)

• PPI article retrieval: SVM on features 
• bag-of-words + bag-of-NLPs (chunk; phrase; pos; 

protein mention; non-proteins; title phrase, et al.)

• PPI event detection
• Computational linguistic-based methods (e.g. SRL 

type)
• Rule/pattern based methods
• Machine learning based methods (e.g. co-

occurrence)
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Related Work (Word Codebook 
Learning from Unlabeled Data)

• Word clusters from large unannotated corpus
– Parser-based hierarchical clustering (Miller et al, 

ACL 2004)
– Distributional Similarity methods: (Lee and 

Pereira, ACL'99), (McCallum et al, SIGIR'98)
• Mostlly unsupervised, co-occurrence based and 

no-training  (similar to our step(1): co-occurrence) 
• Our methods provide semi-supervised strategy 

(WCD) and unsupervised model with auxiliary 
task (LM) 

• Semi-supervised learning with labeled features
• (Schapire:2002,Wu:2004,Druck:2008_
• Use prior class-bias of features to augment 

supervised models 
• Our methods learn novel features to improve 

supervised models 
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Challenges for bioNLP

 Substantially more difficult:
– Constantly changing vocabulary, millions of gene 

names
– Complex orthographic patterns, variations: 

expands active vocabulary, complicates building 
dictionaries

– Ambiguity. Same name may refer to a range of 
biological objects and terms.

 Challenges:
– annotated data is scarce
– millions of unannotated articles (e.g., MEDLINE)
– Learn from unlabeled data with very limited prior 

knowledge
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NLP: Part-of-speech tagging

 48 classes, 1M words

 Best known POS system: 2.76% (Toutanova, 2003), 
many more complex features
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NLP: English NER

 17 classes, 200K words

 Best system: 89.31% (extensive use of dictionaries)
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NLP: German NER
 17 classes, 200K words

 Best system: 74.17%
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bioNER: Comparison with top systems
 BioCreative II

 Best system: 87.21% (many more features, parsing, 
dictionaries)
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Gene Mention Prediction using NN

 Results
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Gene Mention Prediction: 
system comparison

78

80

82

84

86

88

90

Baseline
Co-occurrence
LM
WCDL
LM+WCDL
*LM+WCDL
*LM+WCDL+UNI
PROT
best

Baseline
Previous best 
system
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Gapped kernels

 Count #non-contiguous subsequences of 
length k and up to g gaps

 Compute kernel between X and Y as a dot-
product of two feature vectors:

K X ,Y = ∑
k−word a

C a |X C a |Y 

C a | X =# subsequencesmatching a
with up to g gaps

Gapped

instances
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