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Abstract—String kernel-based machine learning methods have yielded great success in practical tasks of structured/sequential data
analysis. They often exhibit state-of-the-art performance on many practical tasks of sequence analysis such as biological sequence
classification, remote homology detection, or protein superfamily and fold prediction. However, typical string kernel methods rely on
analysis of discrete one-dimensional (1D) string data (e.g., DNA or amino acid sequences). In this work we address the multi-class
biological sequence classification problems using multivariate representations in the form of sequences of features vectors (as in
biological sequence profiles, or sequences of individual amino acid physico-chemical descriptors) and a class of multivariate string
kernels that exploit these representations. On three protein sequence classification tasks proposed multivariate representations and
kernels show significant 15-20% improvements compared to existing state-of-the-art sequence classification methods.

Index Terms—biological sequence classification, kernel methods

1 INTRODUCTION

Analysis of large-scale sequential data has become an
important task in machine learning and data mining,
inspired in part by numerous scientific and technological
applications such as the biomedical literature analysis
or the analysis of biological sequences. Classification of
string data, sequences of discrete symbols, has attracted
particular interest and has led to a number of new
algorithms [1], [2], [3], [4], [5]. These algorithms often
exhibit state-of-the-art performance on tasks such as
protein superfamily and fold prediction [2], [4], [6], [7],
or DNA sequence analysis [8].

A family of state-of-the-art kernel-based approaches
to sequence modeling relies on fixed length, substring
spectral representations of sequences and the notion of
mismatch kernels, c.f. [2], [3]. There, a sequence is rep-
resented as the spectra (histogram of counts) of all short
substrings (k-mers) contained within a sequence. The
similarity score K(X,Y’) for pair of sequences X and
Y is established by exact or approximate matches of k-
mers contained in X and Y. Initial work, e.g., [3], [9l,
has demonstrated that this similarity can be computed
using trie-based approaches in O(k™ S| (| X | + |Y])),
for strings X and Y with symbols from alphabet ¥ and
up to m mismatches between k-mers. More recently,
[10] introduced linear time algorithms with alphabet-
independent complexity applicable to the computation
of a large class of existing string kernels.

However, typical spectral models (e.g.,
mismatch/spectrum kernels, gapped and wildcard
kernels [6], [3]) essentially rely on symbolic Hamming-
distance based matching of 1D k-mers contained in the
sequences. For example, given 1D sequences X and
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Y over alphabet ¥ (e.g.,, amino acid sequences with
|X|=20), the spectrum-k kernel [11] and the mismatch-
(k,m) kernel [3] measure similarity between sequences
as

K(X,Y[k,m) =Y B (71X)Ppm (7]Y)
’YEZI"’
=> Y > In m(B8,7) (1)
acX BEY yexk
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is the number of occurrences (possibly with up to m
mismatches) of the k-mer v in X, and I,,,(o,y) = 1 if
a is in the mutational neighborhood Ny ,,,(7) of v, i.e.
and v are at the Hamming distance of at most m. One
interpretation of this kernel (Eq. [1) is that of cumulative
Hamming distance-based pairwise comparison of all
k-long substrings a and  contained in sequences X
and Y, respectively. In the case of mismatch kernels
the level of similarity of each pair of substrings («, 3)
is based on the number of identical substrings their
mutational neighborhoods Ny (o) and Ny .. (5) give
rise to, > s Im(c, 7)1 (B, 7). For the spectrum kernel,
this similarity is simply the exact matching of o and §.
We note that existing k-mer string kernels essentially
use only 1D discrete sequences (e.g., amino acid or nu-
cleotide sequences) and Hamming-based matching.
However, as shown in previous works, using other,
multidimensional, protein sequence representations is cru-
cial in obtaining more accurate and robust predictions.
In part, low sequence identities among distantly related
proteins with similar structures and functions motivated
the use of these other multidimensional amino-acid
physico-chemical representations as physical and chem-
ical properties of protein chains may preserve better



among these otherwise very dissimilar primary protein
sequences. For instance, 20-dim sequence profiles as
in profile kernel method [2] or amino-acid descriptor
vectors, e.g., as in recent work [12], [13], [14], can pro-
vide significantly more accurate results on a number of
biological problems, including structural classification of
proteins, protein remote homology detection [13], [14],
protein function prediction [15], [16], protein subcellural
localization [17], protein-protein binding prediction [18],
[19], etc.

In cases of multidimensional sequence representations
mentioned above (sequence profiles, or sequences of
amino-acid descriptors), input data occurs in the form
of sequences of R-dim (real-valued) feature vectors (i.e.
multivariate sequences).

In this work, we consider an approach that directly
exploits these richer R-dim multivariate sequences (se-
quence profiles and amino-acid descriptor sequences, in
particular) and propose general, simple discrete multi-
variate representations of sequences (Sec. B.2). The
proposed class of multivariate similarity kernels allows
efficient inexact matching and classification of the multi-
variate discrete sequences (i.e. sequences of R-dim discrete
feature vectors) (Sec. 3.3). The developed approach is
applicable to both discrete- and continuous-valued orig-
inal sequences, such as biological sequence profiles, or
sequences of amino acid descriptors. Experiments using
the new multivariate string kernels on protein remote
homology detection and fold prediction show excellent
predictive performance (Sec.[d) with significant 15%-20%
improvements in predictive accuracy over existing state-
of-the-art sequence classification methods.

2 RELATED WORK

Over the past decade, various methods have been
proposed to solve the sequence classification problem,
including generative, such as HMMs, or discriminative
approaches. Among the discriminative approaches, in
many sequence analysis tasks, string kernel-based [20]
methods provide some of the most accurate results [2],
(31, [51, [el, [4], [21].

The key idea of basic string kernel methods is to map
sequences of variable length into a fixed-dimensional
vector space using feature map ®(-). In this space a
standard classifier such as a support vector machine
(SVM) [20] can then be applied. As SVMs require only
inner products between examples in the feature space,
rather than the feature vectors themselves, one can de-
fine a string kernel which computes the inner product
in the feature space without explicitly computing the
feature vectors:

where X,Y € D, D is the set of all sequences composed
of elements which take on a finite set of possible values
from the alphabet X.

Sequence matching is frequently based on the co-
occurrence of exact sub-patterns (k-mers, features), as
in spectrum kernels [11] or substring kernels [22]. Inex-
act comparison in this framework is typically achieved
using different families of mismatch [3] or profile [2]
kernels. Both spectrum-k and mismatch-(k,m) kernels di-
rectly extract string features from the observed sequence,
X. On the other hand, the profile kernel, proposed by
Kuang et al. in [2]], builds a 20 x | X| profile [23] Px and
then uses a similar |¥|*-dimensional representation, now
derived from Px.

Most of existing string kernel methods essentially
amount to analysis of 1D sequences over finite alphabets
¥ with 1D k-mers as basic sequence features (as in e.g.,
spectrum/mismatch [11], [3], substring [22], gapped or
wildcard kernels [6]). However, sequences can often be
represented in the form of sequences of feature vectors,
i.e. each input sequence X is a sequence of R-dim feature
vectors which could be considered as R x |X| feature
matrix (i.e. multivariate or 2D sequence). For example,
protein sequences could be considered as sequences of
R-dim feature vectors (multivariate) describing physi-
cal/chemical properties of individual amino acids (e.g.,
as in [12]]), or as sequence profiles (e.g., as in [2], [7])
describing each position as a probability distribution
over amino acid residues.

A number of methods have been proposed previously
that use amino-acid descriptors (feature vectors), includ-
ing earlier works on protein function prediction (e.g.,
SVM-prot [16], ProtFun [24], DMP [15]), protein-peptide
binding prediction [18], [19] using concatenation of 5-
dim amino-acid descriptors as peptide representations,
protein subcellular localization [17] using amino-acid
kernel derived from amino-acid substitution matrices,
prediction of protein folding class [25] using peptide-
chain descriptors for composition and distribution of
amino acid attributes, protein remote homology detec-
tion using AAindex attributes [14]], [13] Recent work [12]
uses BLOSUM descriptors to define k-mer similarity
measure and shows improvements over traditionally
used string kernels.

In contrast to previous work that either uses amino-
acid feature vectors to obtain fixed-length global se-
quence descriptors (as in, e.g., [19], [25], [16]), or lim-
its use of amino-acid descriptors to define matching
function for k-mers (e.g., [12], [17]), we propose novel
methods that directly exploit these multivariate sequence
representations (e.g., sequence of amino-acid descrip-
tors, or sequence profiles) and allow to capture similar-
ity /difference in both dimensions: along protein-chain,
and along feature dimension (cumulative feature-chain
similarity).

To this extent, we propose discrete and binary mul-
tivariate protein sequence representations (Sec.
and consider a family of multivariate similarity kernels
(Sec. that as we show empirically (Sec.[d) provide
effective improvements in practice over traditional 1D
(univariate) sequence kernels for a number of challeng-



ing biological problems, including protein remote ho-
mology detection, protein structural class classification,
and protein binding prediction.

3 MULTIVARIATE
METHOD

In a typical setting, string kernels are applied to 1D
(univariate) string data, such as amino acid sequences
or DNA sequences. In this work we consider alternative
multivariate representations for sequences (Fig. as se-
quences of R-dim feature vectors (e.g., sequences of amino-
acid descriptor vectors, or amino-acid sequence profiles).
In particular, given as input description of biological
sequences in the form of sequences of (real-valued)
identically sized amino-acid feature vectors, we consider
the following two discrete multivariate representations:

DISCRETE SEQUENCE

1) Symbolic embedding. Encoding original real-valued R-
dim feature vectors in discrete (binary) E-dim space
using, e.g., similarity hashing approach [26] (Fig-
ure [1a} left subfigure);

2) Direct feature quantization. Directly quantizing each
feature using, for example, uniform binning (Fig-
ure[la} right subfigure), i.e. representing original (real-
valued) R x | X| feature sequence as R x |X| discrete
sequence.

In both approaches, the (real-valued) multivariate (R x
|X|) feature sequence X is re-represented as E x |X|
or |R| x |X| multivariate (2D) discrete feature sequence.
Figure [2| illustrates these representations for a given
sequence X='SLFEQLGV’. In this figure, a 20-dim multi-
variate representation for original 1D sequence of amino
acids is obtained by replacing each individual amino
acid with a 20-dim vector of substitution BLOSUM62
scores which are then either directly discretized (Fig.
or transformed into binary vectors using symbolic Ham-
ming embedding (Fig. 2b). Resulting multivariate repre-
sentations reflect underlying similarities among amino
acids more accurately compared to symbolic 1D Ham-
ming similarities.

We will show in the experiments that using these
discrete multivariate representations can significantly (by
15-20%) improve predictive accuracy compared to tradi-
tional 1D (univariate) kernel representations as well as
other state-of-the-art approaches (Sec. ).

In the following, we will discuss these proposed rep-
resentation approaches in detail.

3.1 Direct feature quantization

In this approach, each feature f7,j=1...Ris quantized
by dividing its range (f? .., fi,..) into a finite number
of intervals. In the simplest case, the intervals can be
defined, for instance, using uniform quantization, where
the entire feature data range is divided into B equal
intervals of length 0 = (fmaez — fmin)/B and the index
of quantized feature value Q(f) = (f — fmin)/d is used

to represent the feature value f. Partitioning the feature

data range could also be obtained by using 1D clustering,
e.g. k-means, to adaptively choose dicretization levels.

In the experiments (Sec. [#) we use this approach with
20 x |X| sequence profiles obtained from PSI-BLAST
and 20 x |X| BLOSUM substitution profiles, and show
how using these multivariate representations with mul-
tivariate similarity kernels (Sec. can improve the
predictive ability of classifiers on a number of protein
sequence classification tasks.

3.2 Discrete (symbolic) Embedding

Given multivariate input sequence X = xz1,...,z, of R-
dim feature vectors, each R-dim vector can be mapped
into discrete feature vectors using symbolic embedding
E(-) as in, for example, similarity hashing [26]. Using
similarity hashing, input sequence X = z1,...,2, of R-
dimensional feature vectors, z; € R® Vi, is mapped
intro a binary Hamming-space embedded sequence

E(X)=E(x1), ..., E(z,),

where E(z;) = elel...el is a symbolic Hamming
embedding for item z; in X, with |E(z;)] = B, the
number of bits in a resulting binary embedding of x;.
This embedding as proposed in [26] essentially aims
to minimize average Hamming distance between binary
embeddings corresponding to similar R-dim data points:

min Y _ S(a, B)h(E(a), B(8))? (4)
a,B

where S(a, ) is the similarity between data points «
and 3 in the original R-dim space and h(E(«), E(B)) is
the Hamming distance between binary vectors E(a) and
E(B) in the Hamming embedded space.

The solution (set of embedding binary vectors E(-)
that minimize the embedding objective in Eq. ) can be
obtained by solving the eigenvalue problem as shown
in [26] and thresholding eigenfunctions to obtain binary
codes.

Under this binary Hamming embedding, the Ham-
ming similarity, h(E(«), E(5), between two B-dim fea-
ture embeddings F(«) and E(8) is proportional to the
original similarity score S(a, 8) between R-dim vectors
a and (, i.e.

h(E(e), E(B)) x S(a, B). ®)

Using this Hamming embedding approach, original
R x |X]| (real-valued) feature sequence X is represented
as E x |X| binary feature sequence, which can then be
used with the string kernel method.

3.3 Multivariate similarity kernels

We now introduce efficient multivariate similarity kernels
for the discrete multivariate sequence representations
defined in Sec. Bl

The input sequences X and Y are sequences of identi-
cally sized (e.g., discrete R-dim or binary B-dim) amino-
acid feature vectors (see Fig. [2). Similarity evaluation



X | 2 n
| X1
2 X1,2
XI,R
re-embed R

real Rxn — discrete/real Exn
(eg. similarity hashing of R-
dim. feature vectors)l y)

el

E(X) 2

€12

Elee

| X1

2|x12

R[xir

direct feature quantization

real Rxn — discrete Rxn
(eg. uniform or non-
n uniform) I 2 n

Q(X)2
R

™~ quantized value
(bin ID or cluster ID)

(a) Proposed approach. Input sequence X of R-dim feature vectors is represented in 2D using
direct feature quantization Q(X) or embedding E(X). Multivariate string kernel is used to

measure sequence similarities.

Fig. 1: Proposed discrete multivariate representations.
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(a) Representation of protein sequence X using direct feature
quantization. Each amino acid is represented using 20-dim vector
of BLOSUM62 substitution probabilities (high values indicate
substitutions that are more likely).

(b) Representation of protein sequence X using symbolic binary embed-
ding E(X). Each amino acid is represented as an 8-bit binary vector
obtained using similarity hashing. Note that similar amino acid have
similar binary representations (e.g., hydrophobic amino acids L, and V
or hydrophilic amino acids E, and Q).

Fig. 2: Examples of discrete multivariate representations for protein sequences using direct feature quantization or

similarity hashing (binary Hamming embedding).

between the two sequences X and Y under multivariate
(2D) representations amounts to comparing pairs of k x R
(k x B) 2D submatrices contained in X and Y, where k
is the length of 2D-k-mer (i.e. k is similar to the length
of the k-mer in typical k-mer based univariate kernels).
A multivariate string kernel can then be defined for the
multivariate (R-dim or B-dim) sequences X and Y as

Kop(X,Y) = Z Z K(az2p, B2p)

azp€X Bap€Y

(6)

where asp and fap are |R| x k (or |E| x k) submatrices
(2D=k-mers) of X and Y and K(aap,f2p) is a kernel

function defined for measuring similarity between two
submatrices. The multivariate kernel in Eq. [f| corre-
sponds to cumulative pairwise comparison of submatri-
ces (2D-k-mers) contained in multivariate sequences X
and Y (this is similar to typical spectrum kernels, e.g.
mismatch kernel in Eq. [I).

One possible definition for the submatrix kernel £(-, )
in Eq.[6is row-based similarity function

R
K(azp, Bap) = Z I(abp, Bip)

i=1

@)

where I(-,-) is a similarity /indicator function for match-



ing 1D rows o, and S3%,. The matching function I(-,-)
could be defined as I(a, ) = 1 if the Hamming distance
d(a, ) < m, and 0 otherwise (i.e. similar to the mis-
match kernel). In the experiments, we use spectrum, mis-
match [3], and spatial sample (SSSK) [4] kernel matching
functions as our 1D row matching function I(ad, 85 5)
in Eq. m which results in corresponding multivariate spec-
trum, mismatch, and spatial sample kernels (referred as
2D-Spectrum, 2D-Mismatch, and 2D-SSSK, respectively).

Intuitively, according to the kernel definition (Eq. [7),
similar submatrices (2D-k-mers) (i.e. submatrices with
many similar rows) will result in high kernel value
K(-,-).

Using Eq. [} the multivariate (2D) kernel in Eq. [6| can
be written as

Kop(X,)Y) =

S Y Y

i=1 asp€X Bap€Y

042D7 B2D (8)

which can be efficiently computed by running spectrum
kernel with 1D k-mer matching function I(-,-) R times,
i.e. for each row b = 1... R. The overall complexity of
evaluating multivariate kernel K>p(X,Y) for two mul-
tivariate (R-dim) sequences X and Y is then O(R-k-n),
i.e. is linear in sequence length n.

4 EXPERIMENTAL EVALUATION

We study the performance of our methods in terms of
predictive accuracy on a number of challenging biolog-
ical problems using standard benchmark datasets for
protein sequence analysis.

4.1

We test proposed methods on a number of multi-class
biological sequence classification and prediction tasks:

Datasets and experimental setup

(1) Protein remote homology detection task. This tasks
tests the ability to build a classifier that would
correctly recognize proteins from previously unseen
protein families belonging to the target superfamily.
We use two benchmark datasets (SCOP 1.53 and
SCOP 1.59) that have been used by many previous
works (e.g., [27], [2], [13], [28]). These benchmark
datasets are derived from SCOP (Structural Classifi-
cation of Proteins) database which aims to categorize
proteins into structural hierarchy (Fig of classes,
folds, superfamilies, and families.

(2) Protein fold recognition task. The task here is to
correctly recognize proteins from previously unseen
superfamilies under target protein fold. We use a
dataset with 4671 sequences derived from SCOP
(SCOP 1.73) to simulate fold recognition problem.

(3) Multi-class protein fold classification. The task here
is to classify given protein into correct fold. For
this task, we use two benchmark datasets. The
first dataset is a benchmark dataset (Ding-Dubchak
dataset) containing 694 protein sequence from 27
protein folds [29], [7]. The second dataset is a larger

dataset with 3860 protein sequences from 26 different
folds [7]. For both datasets, the protein sequences are
divided into training and testing sets [29], [7].

(4) MHC-peptide binding prediction. The goal of this
prediction task is to predict whether a given peptide
would bind to the target major histocompatibility
complex (MHC) protein molecule. We use the bench-
mark dataset proposed in [30] for this task.

We provide details of the tasks and benchmark
datasets in Table |1} For each of the tasks, we now pro-
vide details of datasets, experimental settings, train/test
procedures.

4.1.1

For the remote protein homology prediction task, we
follow standard experimental setup used in previous
studies [27] and evaluate average classification perfor-
mance (ROC50) on 54 remote homology experiments,
each simulating the remote homology detection problem
by training a classifier on a subset of families (posi-
tive examples) under the target superfamily and testing
the superfamily classifier on the remaining (held-out)
families from the target superfamily according to SCOP
hierarchy (Figure [3). Negative training and testing exam-
ples are chosen from protein families outside of target
superfamily fold [27], [11]. For example, as shown in
the figure, the two families (1.a.1.1 and 1.a.1.2) from the
target superfamily 1.a.1 will be used as positive training
data, while the held-out sequences from the third family
(1.a.1.3) will be used for testing classifier’s performance.

Protein remote homology detection dataset

very low
sequence similarity

low
sequence similarity

Superfamily
1al

Superfamily
1ai

Family
1.a.1.3

20 ) ()
Fig. 3: Structural Classification of Proteins (SCOP) hi-
erarchy. Protein domains organized into classes, folds,
superfamilies, and families. Protein sequences from the
same superfamily but different families are considered
remote homologs.

4.1.2 Protein fold recognition dataset

Ding et al. [29] designed a challenging fold recognition
data set [[] which has been used as a benchmark in
many studies, for example [7]. The data set contains
sequences from 27 folds divided into two independent
sets, such that the training and test sequences share less
than 35% sequence identities and within the training set,
no sequences share more than 40% sequence identities.

1. http:/ /ranger.uta.edu/~chqding/bioinfo.html
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TABLE 1: Remote homology and fold prediction datasets

Dataset No. seqs  No. classes  Training Testing Evaluation Source
Protein remote homology (SCOP 1.59) 7329 54 T T 54 binary train/test splits [27]
Protein remote homology (SCOP 1.53) 4352 52 -f -t 54 binary train/test splits [27]
Protein fold detection (SCOP 1.73) 4761 96 -1 -1 96 binary problems

Protein fold classification (D&D dataset) 694 27 311 383 multi-class train/test split [29]
Protein remote fold classification 3860 26 3246 614 multi-class train/test split 171

T number of training/testing examples varies per experiment (i.e. depends on target fold/superfamily)

4.1.3 Remote protein fold detection dataset

Melvin et al. [7] derived this data set from SCOP
1.65 [31] for the tasks of multi-class remote fold detec-
tion. The data set contains 26 folds, 303 superfamilies
and 652 families for training with 46 superfamilies held
out for testing to model remote fold recognition setting.

4.1.4 MHC-peptide binding prediction dataset

The task here is to predict which peptides bind to a
given major histocompatibility complex (MHC) protein
molecule. Each type of MHC molecules (MHC alleles)
have unique binding preferences and as a result the
repertoire of the binding peptides varies among various
MHC alleles. The task of predicting whether the peptide
is a binder or a non-binder for a given MHC allele is im-
portant task in immunoinformatics and clinical research.
We use the IEDB benchmark dataset [30] which con-
tains quantitative binding data (/C5o values) for short
peptides (9-mers) with respect to various MHC alleles.
Peptides with ICs5p > 500 are considered to be non-
binding, while peptides with IC59 < 500 are considered
to be binding.

4.2 Baseline methods

We compare our approach with a number of other state-
of-the-art methods for sequence classification, both in
fully supervised and semi-supervised settings, including
spectrum/mismatch [11], [3], spatial sample kernels [4],
substitution [6]], and semi-supervised profile kernels [2].

The spectrum/mismatch kernel for two sequences X
and Y corresponds to cumulative pairwise comparison
of k-mers contained in X and Y

]{()(7Yj ::jg: j{:éin(aaﬁ)

aceX ey

where the k-mer matching/similarity function

Sm(,8) = Y Ln(v, ) (7, 8)

yeDk

indicates the number of k-mers v at Hamming distance
of at most m from both « and 8 (I,,(a,5) = 1 if the
Hamming distance h(a, 8) < m, and 0, otherwise).

The substitution kernel [6] replaces Hamming
distance-based indicator function I,,(a,8) with a
scoring function

k
L=> i logp(ai|Bi) <o
0, otherwise

Infa.8) = {

(p(a;|B;) is a conditional substitution probability).
The profile kernel [2]

|X|—k+1|Y|—k+1

EpX, V)= > Y Lpi(X), M (piy (V). 7)

vexk ix=1  iy=1

uses position-specific scoring function I, (p;, ) over 20 x
| X| profile p(X) = p1...px|

k
L=>2pi+j-1(Bj) <o
0, otherwise

Ip(pi, B) = {

where p;(3;) indicates emission probability from se-
quence profile p(X) at position i. Compared to the
substitution kernel, the score I,(a, 8) for two k-mers «
and 8 depends on the positions of o and 8 within the
sequences.

The spatial sample kernel [4] is defined over spatial
features

al (gag,(d%,"' 7@)04/

representing all possible arrangements of ¢ k-long sub-
strings with the maximum distance between two con-
secutive substrings in the ¢-tuple constrained by the dis-
tance parameter d. Inclusion of the spatial arrangement
information among k-mers results in better performance
compared to spectrum / mismatch kernels [4].

4.3 2D representations for protein sequences

For remote homology and protein fold prediction tasks,
we use 20-dim BLOSUM amino acid substitution vectors
for each amino acid to obtain a 20 x |X| 2D amino
acid sequence representation for each 1D amino acid
sequence X (i.e., we replace each individual amino acid
i in X with a 20-dim vector b; ;,7 = 1...]|X| = 20, of
substitution scores for amino acids i and j). We also
use 5-dimensional quantitative descriptors [32] derived
from 237 physico-chemical amino acid properties. As
we show in the experiments both of these descriptors
(20-dim BLOSUM and 5-dim quantitative descriptors)
improve predictive accuracy compared to 1D symbolic
amino acid representations.

We also use 2D sequence profiles (20 x |X|) and
compare with profile kernel approach [2].

4.4 2D kernels for protein sequences

We use state-of-the-art spectrum/mismatch [6] and spa-
tial (SSSK) [4] kernels as our basic 1D similarity kernels
(i.e. we use spectrum/mismatch and SSSK similarity



kernels as the row-matching function I(-,-) in Eq. [7).
Depending on the choice of the 1D similarity kernel,
we refer to corresponding multivariate kernels as 2D-
spectrum, 2D-mismatch, and 2D-SSSK multivariate ker-
nels. We use typical settings for kernel parameters and
set k=5, m=1 for mismatch kernels, k=1, t=3, d=5 for
SSSK kernels. Parameters k, and o for the profile kernel
are set to 5 and 7.5 according to the best found in
previous studies [2].

For direct feature quantization, we use uniform quan-
tization of each feature data range into B=32 bins (dur-
ing testing for values outside of the (fiin, fmaez) range,
we use special values of 0 and B+1 for values smaller
than f,,;, or larger than f,..). For discrete embedding
with similarity hashing, we use E = 8 bits.

For all tasks, we use kernel SVM [20] as a classifier.
For multi-class problems, we use one-vs-rest approach
and train a binary classifier for each class.

All experiments are performed on a single 2.8GHz
CPU. The datasets used in our experiments and
the supplementary data/code are available at

kernels [3]], [11], spatial sample kernels (SSSK) [4], semi-
supervised cluster kernel [27], as well as state-of-the-art
profile kernel [2].

To obtain multivariate protein sequence representa-
tions, we use rows from the BLOSUM substitution ma-
trix as amino-acid feature vectors, i.e. all of the protein
sequences are represented as 20 x | X | multivariate (2D)
sequences.

In Table |2} we compare in terms of average ROC and
ROC50 univariate kernels (first column), multivariate
(2D) kernels using discrete feature quantization (second
column), and multivariate (2D) kernels using binary
Hamming embedding (third column).

As can be seen from results in Table 2, multivariate
string kernel provides effective improvements over other
string kernel approaches. For instance, using 2D BLO-
SUM substitution profiles with spectrum and mismatch
kernels significantly improves average ROCS50 scores
from 27.91 and 41.92 to 43.29 and 49.17, respectively
(relative improvements of 50% and 17%), compared to
traditional (1D) spectrum/mismatch approaches.

http://paul.rutgers.edu/ pkuksa/mvstring.html.Similar improvements observed when using spatial

4.5 Evaluation measures

For multi-class protein fold recognition tasks, the meth-
ods are evaluated using 0-1 and top-g balanced error
rates as well as F1 scores. Under the top-¢g error cost
function, a classification is considered correct if the rank
of the correct label, obtained by sorting all prediction
confidences in non-increasing order, is at most ¢g. On
the other hand, under the balanced error cost function,
the penalty of mis-classifying one sequence is inversely
proportional to the number of sequences in the target
class (i.e. mis-classifying a sequence from a class with a
small number of examples results in a higher penalty
compared to that of mis-classifying a sequence from
a large, well represented class). Balanced error rates
is more indicative of the performance on protein clas-
sification tasks since class sizes are unbalanced (vary
in size considerably), and the balanced error captures
performance on all classes, not just the largest classes.

We evaluate remote protein homology performance
using standard Receiver Operating Characteristic (ROC)
and ROC50 scores. The ROC50 score is the (normalized)
area under the ROC curve computed for up to 50 false
positives. With a small number of positive test sequences
and a large number of negative test sequences, the
ROC50 score is typically more indicative of the predic-
tion accuracy of a homology detection method than the
ROC score.

4.6 Remote homology detection

We first compare our proposed multivariate string kernel
method with a number of state-of-the-art kernel meth-
ods for remote homology including spectrum/mismatch

sample kernel (SSSK) (average ROCS50 increases from
50.12 using 1D amino acid sequences to 55.54 using 2D
BLOSUM representation with SSSK kernel, 11% relative
improvement).

We also observe that the multivariate (2D) kernel
provides substantial improvements in semi-supervised
settings using semi-supervised cluster kernel [27] and
profile kernel approaches. For example, the multivariate
kernel on sequence profiles used by the profile ker-
nel (obtained from non-redundant sequence database
(NRDB) [2]]) achieves a higher average ROC50 score of
86.27 compared to 81.51 of the profile kernel.

We also note that using direct feature quantization
provides more effective improvements compared to dis-
crete embedding with similarity hashing (Table [2). For
example, using similarity hashing with the spectrum and
SSSK kernels yields smaller improvements compared
to direct feature quantization (average ROC50 score of
39.88 vs 43.29, and 54.02 vs 55.54, respectively).

Table [3| shows for each of the kernel methods (spec-
trum, mismatch, spatial sample, and profile) p-values of
the Wilcoxon signed-rank test on the ROC50 scores (54
experiments) against 1D kernels. As can be seen from the
table, observed improvements (Table [2) are significant.

Table [5| summarizes classification performance of the
discrete (binary) embedding with similarity hashing as a
function of the embedding size (£=8,16,32 bits) and the
kernel parameters (£=5,8,10).

In Table [} we also compare with recently proposed
spectrum-RBF and mismatch-RBF methods [12] which
incorporate physico-chemical descriptors with traditional
spectrum/mismatch kernels, as well as generative model
based methods (Profile HMM from [34], and traditional
SVM-Fisher methods [33]), and recent sequence learning
methods SEQL [28].

We note the our multivariate similarity kernel using



TABLE 2: Classification performance (mean ROC50) on protein remote homology detection (54 experiments)

Method Univariate (1D) Multivariate (2D) DFQ Multivariate (2D) Sim. hashing

Mean ROC  Mean ROC50 || Mean ROC  Mean ROC50 || Mean ROC Mean ROC50
Spectrum [11] 78.13 2791 88.53 43.29 87.23 39.88
Mismatch-(k=5m=1) [3] 87.75 41.92 91.03 49.17 90.94 49.38
Spatial sample (SSSK) [4] 90.21 50.12 92.17 55.54 91.68 54.02
Profile kernel-(k=5,0=7.5) (NRDB) [2] 97.34 81.51 98.45 86.27

TABLE 3: Statistical significance of the differences between 1D (amino acid sequence) kernels and the proposed mul-
tivariate kernels (remote homology detection). Multivariate similarity kernels perform better than the traditionally

used 1D (univariate) kernels

Method p-value

effect size

relative improvement (2D vs 1D), %

Spectrum kernel 2.5e-6
Mismatch kernel 6.5e-3
Spatial sample kernel (SSSK)  2.7e-5
Profile kernel 2.9e-4

0.58
0.26
0.20
0.26 6.3

50.6
17.3
10.8

TABLE 4: Protein remote homology detection. Comparison with generative and other state-of-the-art methods

Method

Mean ROC  Mean ROC5

2D-SSSK
Spectrum-RBF [zt
Mismatch-RBF [12]f
SVM-Fisher [33]
Profile HMM [34]
SEQL [28]

92.17 55.54
- 421
- 43.6
75.66 31.90
88.33 49.16
92.20 52.17

T results from [12]

TABLE 5: Remote homology prediction. Classification performance (mean ROC50) as a function of the embedding

size E and the kernel parameters

Embedding size &/

8
16
32

k=5 k=8 k=10
38.53 37.53 37.96
39.59 3854 36.41
39.88 39.72 3843

only BLOSUM substitution scores achieves higher av-
erage ROC50 scores (Table [d) compared to computa-
tionally more expensive spectrum-RBF/mismatch-RBF
approaches [12] which exploit richer physico-chemical de-
scriptors (BLOSUM, AAindex descriptors, etc).

Table [6] shows results on the second protein remote
homology benchmark (SCOP 1.53) and compares the
performance of the proposed 2D kernels (2D-Mismatch
and 2D-SSSK) with the univariate string kernels (mis-
match and SSSK), as well as recently developed SVM
prediction methods that use physico-chemical amino-
acid descriptors (SVM-PCD [14], SVM-RQA [13]. As can
be seen from the table, multivariate (2D) kernels display
the highest ROC50 performance on this benchmark.

4.7 Protein fold detection

We compare performance on SCOP 1.73 fold bench-
mark in Table [/} Similar to the observed improvements
on protein remote homology detection (Table [2), on
this more challenging fold detection task, multivariate
(2D) kernels (2D-Mismatch, 2D-SSSK) provide effective
improvement over corresponding univariate mismatch
and SSSK kernels (e.g., we observe increase in average
ROC50 scores from 24.34 to 27.64 using 2D-SSSK kernel
as opposed to the univariate SSSK kernel).

4.8 Multi-class protein fold prediction

For multi-class protein fold prediction (Table
Ding&Dubchack dataset, 27-folds), using the multivari-

ate string kernel with BLOSUM profiles (20 x |X|) we
observe substantial improvements over 1D mismatch
kernel, e.g., balanced error rate improves from 53.2%
to 48.5% for mismatch-(k=5,m=1) kernel (9% relative
improvement). We also note that obtained error rates
compare well with the error rates of computationally
more expensive substitution kernel [6] which also uses
BLOSUM substitution scores to measure similarity be-
tween k-mers.

On a challenging remote fold prediction dataset [7]
(results in Table [9), we observe similar improvements
in ranking quality when using the multivariate kernel
with BLOSUM profiles over corresponding string kernel
methods which use 1D amino acid sequences. For in-
stance, 28.92% top-5 error rate of the cluster kernel with
BLOSUM profile compares well with 35.28% error rate
of the state-of-the-art profile kernel.

4.9 MHC binding prediction

We test MHC binding prediction performance on three
MHC alleles (A*2301,B*5801,A*0201) with small (104
peptides), moderate (988 peptides), and large (3089 pep-
tides) number of binding peptides. The classification
performance (binding vs non-binding) is evaluated us-
ing average ROC scores over 5-fold cross-validation
(cross-validation folds are the same as in [30]). Table
compares performance of the traditional spectrum and
weighted degree (WD) kernels [35] which use position-
specific matching. As can be seen from the results, using



TABLE 6: Comparison with univariate string kernel and SVM physico-chemical properties-based predictors on

SCOP 1.53 benchmark Method

Mismatch-(5,1)
2D-Mismatch-(5,1)
SSSK

2D-SSSK
SVM-RQA [13]
SVM-PCD [14]

ROC  ROC50
87.25 40.39
89.73 48.20
89.80 51.79
90.45 55.22
91.2 44.1
90.2 -

TABLE 7: Protein remote fold detection performance on SCOP 1.73 fold benchmark

Method

Mismatch-(5,1)
SSSK
2D-Mismatch
2D-SSSK

ROC  ROC50
76.74 20.13
78.96 24.34
78.59 24.88
80.54 27.64

TABLE 8: Multi-class protein fold prediction [29] (27-class)

Method

Balanced

Baseline 1: Mismatch-(k=5,m=1)
Baseline 2: Substitution kernel [6] 45.43

2D-Spectrum

Error, % o F1
error, %
51.17 53.22 61.68
48.02 53.54
43.86 4849 63.18

TABLE 9: Classification performance on fold prediction (multi-class) [7]

Method Error Eop 5 Balanced Top 5 Balanced F1 Top 5
rror Error Error F1

Baseline 1: PSI-BLAST [7] 64.80 51.80 70.30 54.30 - -

Baseline 2: Substitution kernel [6] 51.95 27.04 66.17 36.72 3449 66.27
Baseline 3: Profile (5,7.5) (Swiss-prot) [2] 49.35 20.36 76.67 35.28 26.05 68.09
Spatial sample kernel (SSSK) [4] 48.7 25.08 73.04 44.05 30.57 62.37
2D-SSSK 45.77 20.19 68.99 35.90 33.41 68.09
Mismatch-(k=5,m=1) [3] 53.75 29.15 82.75 52.40 16.92 56.67
2D-Mismatch-(k=5,m=1) 47.88 21.17 73.09 34.31 29.16 70.09
Semi-supervised Cluster kernel (Swiss-Prot) [27] 48.86 19.54 72.88 34.06 26.59 70.07
2D-Semi-supervised Cluster kernel (Swiss-Prot) 48.86 18.40 74.87 28.92 27.06 74.24

multivariate (2D) representations improves performance
over 1D representations (spectrum and weighted de-
gree). Observed improvements are more significant for
small and moderate MHC datasets (A*2301,B*5801), e.g.,
using multivariate BLOSUM representation achieves
higher average ROC score of 83.28 compared to 78.63
ROC of 1D spectrum kernel.

4.10 Running time

In Table we compare the running time for the pro-
posed multivariate string kernel and traditional univari-
ate string kernel methods. We note that for mismatch-
(k,m) kernel computation (protein remote homology
data) we use linear time sufficient-statistic based algo-
rithms from [10]. As can be seen from results, using
multivariate similarity kernels gives similar performance
in running times compared to traditional 1D (univari-
ate) kernels while displaying better classification perfor-
mance (e.g., Table [2).

5 CONCLUSIONS

We presented new multivariate string kernel methods
for biological sequence classification that exploit richer
multivariate feature sequence representations (biolog-
ical sequence profiles, and sequences of amino acid

descriptors, in particular). The proposed approach di-
rectly exploits these multivariate feature sequences (2D)
to improve sequence classification. On three protein
sequence classification tasks this shows a significant 15-
20% improvement compared to state-of-the-art sequence
classification methods.
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