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In this work we focus on sequence-based gene expression prediction, i.e. inferring expression level from compo-
sition of protein sequence using expression data. In particular, we consider a task of predicting gene expression under
specific environment conditions, e.g., nitrogen or sulfur deprivation, from sequence. This task is motivated by recent
interest in sustainable sources of biofuels, and microalgae in particular, which is known to accumulate large quantities
of oils (TAGs, triacylglycerols) when nutrient deprived [7, 2]. Chlamydomonas reinhardtii (C. reinhardtii) has been
used as a model organism to study mechanisms of TAG accumulation as well as basic metabolism and physiology.

We used the complete genome of C. reinhardtii [1] (15497 sequences, annotation v4.0) and gene expression data
under nitrogen deprivation condition [7]. We cast gene expression prediction as a classification problem: given
gene/protein sequence, predict its expression (up-, down- regulation or no change); Table 1 gives an example of
sequence-gene expression data.

State-of-the-art approaches to sequence classification rely on measuring sequence similarity using fixed-length
representations Φ(X) of sequences as the |Σ|k-dimensional histogram (spectra) of counts of short substrings (k-
mers), contained, possibly with up to m mismatches, in a sequence, e.g.., spectrum/mismatch methods [5, 6]. These
algorithms often exhibit state-of-the-art performance on tasks such as biological sequence classification, protein super-
family and fold prediction, etc. This work proposes and evaluates alternative approach for gene expression prediction
using large sequence kernels [3, 4] to relate sequence composition and expression of the genes.

Experiments. We experimented with predicting changes in gene expression at (1) input level, for transcription
factors (TFs) (dataset 1), and (2) whole-genome level, i.e. for all genes (dataset 2). Table 2 summarizes the two
datasets used in this study.

Table 1: Gene expression as classification

# Sequence Expression Class
1 MVAHGVPGLSRGLVGD.. 10.7 up
2 MITGNARSRALTLCPQSLLKVTADALPAGRSVSWSQ.. 1.2 no change
3 MGSSSVGTYHLLLVL.. -9.8 down

In the experiments reported below, we train our models on a subset of protein sequences for which expression level
is known (train set), and use the learned model to predict the expression of other remaining protein (test set). We use
cross-validation to measure prediction performance of the methods. As baselines, we use commonly used methods
including PSI-BLAST and sequence composition approaches.

Table 2: Gene expression data (nitrogen deprivation)

data # total up down no-change
All proteins 15497 988 1181 13328
Transcription factors (TFs) 564 21 30 513

Table 3 compares classification performance of the mismatch string kernel and commonly used PSI-BLAST and
amino acid sequence composition methods for predicting changes in gene expression for transcription factors follow-
ing nitrogen deprivation. As can be seen from the results, using string kernel with k=11,m=5 results in significantly
reduced error rates and increased recall rates. For example, the error rate 30% of the string kernel for predicting
transcription factors with 2-fold change in gene expression (FC=2) is significantly better than the 33.7% or 37% error
achieved by PSI-BLAST or by using sequence composition. Differences in prediction accuracy are even more pro-
nounced when predicting major changes in gene expression (fold change FC=5 in Table 3). For instance, using the
string kernel achieves 21% error rate compared to significantly higher error rate of 43.8% for PSI-BLAST.

For the whole-genome gene expression prediction (Table 4) we observe similar improvements using string kernels.
Compared to error rates of 47.8% and 41% for PSI-BLAST and amino acid composition method, a smaller error rate
of 37.4% is achieved.
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Table 3: Gene expression prediction (10-fold cross-validation). Transcription factors (TFs)

Method Balanced Error Sensitivity
PSI-BLAST, FC†=2 33.68 43.33
Sequence composition, FC=2 36.94 47.00
Spectrum (k=11,m=5), FC=2 30.15 61.33
PSI-BLAST, FC=5 43.77 15.00
Sequence composition, FC=5 46.04 15.00
Spectrum (k=11,m=5), FC=5 21.22 65.00
†FC denotes fold change in gene expression

Table 4: Gene expression prediction. Whole genome (all genes)

Method Balanced Error Sensitivity
PSI-BLAST, FC†=2 47.81 46.57
Sequence composition, FC=2 41.03 51.27
SK, FC=2 37.44 63.3
†FC denotes fold change in gene expression
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