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Analysis of large-scale sequential data has become an important task in machine learning and pattern recognition, inspired in
part by numerous scientific and technological applications such as the document and text classification or the analysis of music
data, or biological sequences.

In this work, we consider general, simple 2D matrix representations of sequences, and introduce a class of 2D similarity
kernels that allows efficient inexact matching, comparison and classification of sequence inputs in the form of sequences of R-
dim. feature vectors. The developed approach is applicable to a wide range of sequence domains, both discrete- and continuous-
valued, such as music, images, or biological sequences. Experiments using the new 2D representations and kernels on music
genre and artist recognition show excellent predictive performance with significant 25%-40% improvements over the existing
state-of-the-art sequence classification methods.

Background. A number of state-of-the-art approaches to classification of sequences over finite alphabet Σ rely on measuring
sequence similarity using fixed-length representations Φ(X) of sequences as the spectra (|Σ|k-dimensional histogram) of counts
of short substrings (k-mers), contained, possibly with up tommismatches, in a sequence, c.f., spectrum/mismatch methods [3, 4].
This essentially amounts to analysis of 1D sequences over finite alphabets Σ with 1D k-mers as basic sequence features. However,
original input sequences are often in the form of sequences of feature vectors, i.e. each input sequence X is a sequence of R-dim.
feature vectors which could be considered as R× |X| feature matrix. Examples of these include

• Music data. Each music sequence X in commonly used MFCC representation is a sequence of 13-dim. MFCC features
(2D sequence of size 13× |X|).

• Image data. Each image could be considered as a 2D sequence of feature vectors corresponding to decomposition of an
image into a regular grid of smaller image blocks (e.g., as in [6]);

• Biological data. Protein sequences could be considered as 2D sequences of R-dim. feature vectors describing physi-
cal/chemical properties of individual amino acids.

In this work, we aim at methods that directly exploit these richer 2D sequence representations to improve accuracy and propose
a family of 2D similarity kernels that as we show empirically provide effective improvements in practice over traditional 1D
sequence kernels for a number of challenging classification problems.

2D sequence representations. In a typically used codebook learning framework, input sequences (or sets) of features
vectors are typically first encoded using codebook IDs (Figure 1a), then standard 1D string kernel methods can be applied. In
this work we consider alternative 2D representations (Fig. 1b) of sequences of feature vectors. In particular, we consider two
approaches: (1) encoding original continuous-valued feature vectors in discrete (binary) space using e.g. similarity hashing
approach [7] (Figure 1b); (2) directly quantizing each feature using, for example, uniform binning (Figure 1b). We will show
in the experiments that using these 2D representations can significantly improve predictive accuracy compared to traditional 1D
kernel representations as well as other state-of-the-art approaches.
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(a) Typical representation for sequence X: R-dim. in-
put feature vectors encoded using corresponding code-
book IDs. 1D string kernel is used to measure similarity
between sequences.
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(b) Proposed approach. Input sequence X of R-dim feature vectors is repre-
sented in 2D using direct feature quantization Q(X) or embedding E(X). 2D
string kernel is used to measure sequence similarities.

Figure 1: Proposed 2D representations contrasted with traditional codebook-based approach and 1D string kernels.
2D similarity kernels. Similarity evaluation between two 2D sequences X and Y under 2D matrix representation amounts

to comparing pairs of 2D submatrices contained in X and Y . A 2D string kernel can be defined for 2D sequences X and Y as
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Table 1: Music genre recognition (10-class, 13-dim. MFCC fea-
tures only)
method Error, % F1
Baseline 1 (non-MFCC): DWCH [5] 21.5 -
Baseline 2 (best): AdaBoost (MFCC,FFT,LPC,etc) 17.5 -
Vector quantization (discrete 1D)
Spectrum (k=1) 34.5 65.61
Mismatch-(k=5,m=2) 32.6 67.51
SSSK-(k=1,t=2,d=5) 31.1 69.08
Manifold Spectrum-(k=1) 26.9 73.31
Manifold SSSK-(k=1,t=2,d=5) 25.0 75.27
Similarity hashing (binary 2D)
Spectrum-(k=8), B=64 27.8 72.25
Manifold Spectrum-(k=8) 24.1 76.29
Uniform direct feature quantization (discrete 2D)
Spectrum-(k=1) 28.5 72.06
SSSK-(k=2,t=2,d=5) 26.3 73.88
Manifold Spectrum-(k=1) 23.0 77.23
Manifold SSSK-(k=2,t=3,d=5) 17.2 83.09
Manifold SSSK-(k=2,t=3,d=5)+FFT 14.1 86.14

Table 2: Music genre recognition (ISMIR contest, 6-class, 13-
dim. MFCC features only)

method Error, % F1
Vector quantization (discrete 1D)
Spectrum (k=1) 24.15 68.99
Manifold Spectrum-(k=1) 19.62 76.17
Similarity hashing (binary 2D)
Spectrum-(k=6), B=32 22.63 71.57
Manifold Spectrum-(k=6) 17.83 79.06
Uniform direct feature quantization (discrete 2D)
Manifold Spectrum-(k=3) 16.74 80.57

Table 3: Music artist identification (20-class, 13-dim. MFCC
features only)
method Error, % F1
Vector quantization (discrete 1D)
Spectrum (k=1) 42.97 57.26
Similarity hashing (binary 2D)
Manifold Spectrum-(k=6) 34.62 66.22
Uniform direct feature quantization (discrete 2D)
Manifold Spectrum-(k=6) 25.67 74.79

K2D(X,Y ) =
∑

α2D∈X

∑
β2D∈Y

K(α2D, β2D) (1)

where α2D and β2D are |R| × k submatrices of X and Y and K(α2D, β2D) is a kernel function defined for measuring similarity
between two submatrices. One possible definition for K(·, ·) that we use in this work is row-based similarity

K(α2D, β2D) =

R∑
i=1

I(αi2D, β
i
2D) (2)

where I(·, ·) is a similarity/indicator function for matching 1D rows αi2D and βi2D. Using Eq. 2, 2D kernel in Eq. 1 can be written
asK2D(X,Y ) =
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i
2D) which can be efficiently computed by running spectrum kernel with 1D

k-mer matching function I(·, ·) B times, i.e. for each row b = 1 . . . B.
Results. We test proposed methods on a number of multi-class sequence classification tasks: (1) 10-class music genre clas-

sification1, (2) 6-class music genre recognition (ISMIR contest2), and (3) 20-class music artist identification (artist20 dataset3).
For all tasks input sequences are sequences of 13-dim. MFCCs, and we test traditional 1D vector quantization (VQ) approach,
and two proposed 2D representations using similarity hashing (2D) and direct uniform feature quantization (2D) (Fig. 1b). For
all kernels we test with and without embedding resulting kernel feature representations into multinomial manifold. We use
state-of-the-art spectrum/mismatch [3] and spatial (SSSK) [2] kernels as our basic 1D similarity kernels.

Music genre recogntion. As shown in Table 1, on a widely used benchmark dataset [5] (10 genres, each with 100 sequences),
2D k-mer-based kernels improve over traditional 1D kernels and other state-of-the-art methods, including DWCH [5], aggregate
feature AdaBoost [1], approaches specifically developed for music classification that also use many other features in addition to
MFCC. For example, using 2D similarity kernels with SSSK [2] achieves significantly higher accuracy of 82.8% compared to
only 75.0% when using 1D kernels. We observe similar overall improvements for 2D similarity kernels on another benchmark
dataset (ISMIR genre contest), Table 2.

Artist recognition. We also illustrate the utility of our 2D string kernels on multi-class artist identification on the standard
artist20 dataset with 20 artists, 6 albums each (1413 tracks total). Table 3 lists results for 6-fold album-wise cross-validation with
one album per artist held out for testing. Using 2D similarity kernels with direct uniform quantization of MFCC features yields a
much lower 25.7% error compared to 42.9% for 1D kernels.
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