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Analysis of large-scale sequential data has become an important task in machine learning and pattern recognition,

inspired in part by numerous scientific and technological applications such as the document and text classification or the

analysis of music data, or biological sequences. We present a general, simple feature representation of sequences, spatial

representation, that allows efficient inexact matching, comparison and classification of sequential data. This approach,

recently introduced for the problem of biological sequence classification, exploits a novel multi-scale representation of

strings.

We demonstrate that the developed approach is applicable to modeling of sequences in a wide range of sequence do-

mains, both discrete- and continuous-valued. Experiments using the new features and algorithms on text document cat-

egorization, music genre and artist recognition show excellent predictive performance, while demonstrating significant

improvements in running time over the existing state-of-the-art sequence classification methods on these large alphabet,

large sequence datasets.

Background. A number of state-of-the-art approaches to classification of sequences over finite alphabet Σ rely on

measuring sequence similarity using fixed-length representations Φ(X) of sequences as the spectra (|Σ|k-dimensional his-

togram) of counts of short substrings (k-mers), contained, possibly with up to m mismatches, in a sequence, c.f., spec-

trum/mismatch methods [3, 4, 2]. However, computing similarity scores, or kernels, K(X, Y )=Φ(X)T Φ(Y ) using these

representations can be challenging, e.g., efficient O(km+1|Σ|m(|X| + |Y |)) trie-based mismatch kernel algorithm [4]

strongly depends on the alphabet size and the number of mismatches m. On the other hand, the gapped [3] and subse-

quence [6] kernels have complexity independent of |Σ|, but quadratic in the sequence length (subsequence method) or show

suboptimal performance compared to other methods (e.g., mismatch).

Method. Similarity evaluation under spatial representation amounts to sampling the sequence features at different

resolutions and comparing the resulting spectra; similar sequences will have similar spectra at one or more resolutions.

Each sampled spatial feature consists of t substrings of length k, with each substring no more than d positions away from

its neighbors. We illustrate the spatial features in Figure 1(a). The upper panel shows a typical contiguous spectrum 6-mer

and the lower panel shows how a spatial sample method with k=2,t=3 would extract features from the string. Much like the

spectrum features, the spatial feature ”AR ND CQ“ shown has the value proportional to the number of times it occurs in

string X .

While spectrum/mismatch representations rely on contiguous string fragments of length k, the spatial representation, on

the other hand, is multi-dimensional, made of variably distanced string fragment combinations (Figure 1(b)). In the figure,

we show a spatial embedding (t = 2) with string fragments as single symbols (k=1) displaced by d (e.g., row ”AA“ and

column d = 2 shows number of occurrences of ”A A“).

(a) (b)

Figure 1: Left: Contiguous k-mer feature α of a traditional spectrum feature (top) contrasted with the spatial samples

(bottom). Right: The multi-dimensional spatial sample embedding.

Results. We test proposed methods on four distinct multi-class sequence classification tasks: (1) text document catego-

rization, (2) music genre classification, (3) artist identification, and (4) multi-class protein fold prediction.

Text Classification. As shown in Table 1, on a widely used benchmark Reuters dataset (word alphabet |Σ| = 29, 224),

spatial representation-based kernels (double(1,5), i.e. doubles of words displaced by up to 5 other words) improves over
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Table 1: Test F1 scores on top Reuters categories. Spatial features

improve over baseline and state-of-the-art methods.
Class TF-IDF KSG Double SS-4† NG-4‡

Earn 98.70 98.3 98.76 97.0 98.40

Acq 97.11 96.8 97.68 88.0 93.20

Money 77.61 84.0 83.71 76.0 75.70

Grain 93.29 92.5 93.38 84.0 84.0

Crude 87.71 89.4 90.51 84.0 84.80

Trade 84.26 90.2 91.23 73.0 77.90

Interest 71.80 81.5 81.15 66.0 71.90

Wheat 80.00 81.8 80.92 79.7 79.0

Ship 72.97 81.9 84.39 65.0 62.60

Corn 81.63 87.1 83.33 63.0 61.0

Macro-average 84.51 88.3 88.51 77.57 78.80

Micro-average 93.18 93.9 94.39 - -

KSG=key-substring-group features [10]
†approximate subsequence kernel [6], ‡N -gram character kernel [6]

Table 2: Music genre classification.
# Genre DWCH† Double(1,5) gapped(4,2)

1 Blues 95.49 (1.27) 93.6 (4.77) 93.8 (2.33)

2 Classical 98.89 (1.1) 95.6 (1.35) 97.2 (1.04)

3 Country 94.29 (2.49) 94.3 (2.21) 91.7 (2.02)

4 Disco 92.69 (2.54) 94.3 (1.41) 91.9 (1.14)

5 Jazz 97.9 (0.99) 95.5 (2.27) 93.4 (1.29)

6 Metal 95.29 (2.18) 94.7 (1.42) 94.0 (2.37)

7 Pop 95.8 (1.69) 96.2 (1.75) 95.5 (1.32)

8 Hiphop 96.49 (1.28) 97.1 (0.99) 94.8 (1.25)

9 Reggae 92.3 (2.49) 95.5 (1.58) 92.3 (2.02)

10 Rock 91.29 (2.96) 95.1 (1.66) 91.7 (1.52)

Mean 95.04 95.19 93.63
†: DWCH=Daubechies Wavelet Coefficient Histograms [5]

other state-of-the-art kernel methods, including n-gram, subsequence kernels, TF-IDF word kernels, KSG [10]). KSG [10]

often displays performance similar to our approach, but uses significantly more intricate grouping of substrings into key

groups (based on, e.g., the maximum parent-child conditional probability in suffix tree decomposition, etc.) Furthermore,

it is important to note that even for the large alphabet set (|Σ|=29, 224) a 8986-by-8986 document similarity matrix for the

double(1,5) kernel takes only 16 seconds to compute on a 2.8GHz CPU.

Music Genre Classification. Music genre recognition is a particularly interesting problem in our setting because music

data is originally continuous-valued and string representations (in the absence of musical notation) may require a large alpha-

bet. On a standard benchmark dataset [5] (10 genres, each 100 audio sequences, quantized into strings with |Σ| = 1024) spa-

tial kernel achieves better overall performance (Table 2, 10-fold cross-validation) compared to the subsequence/gapped(4,2)

kernel, and the DWCHs method [5], an approach specifically developed for music classification. This is achieved using very

simple MFCC features that capture only local information in the music signals. In contrast, the DWCH method uses more

sophisticated features with both local and global information. Compared to the gapped kernel with no spatial information,

our method achieves better performance in eight out of ten genres. Both of these facts point to importance of considering

longer-term spatial relationships in music signals for genre prediction. Similar conclusion carries over to a multi-class set-

ting, Table 3, The raw MFCC features achieve 41.6±3.31 error rate [5]. Our double kernel that incorporates longer-term

dependency (using d=5) improves the error significantly to 29.2 ± 1.61.

Artist recognition. We also illustrate the utility of our generic spatial string features on multi-class artist identification

on the standard artist20 dataset1 with 20 artists, 6 albums each (1413 tracks total). Table 4 lists results for 6-fold album-wise

cross-validation with one album per artist held out for testing. Using spatial information with quantized MFCC features

(|Σ| = 1024) yields 32.5% error compared to 44% using MFCC features alone [1], indicating that our spatial features may

be well suited for this task, especially when coupled with more domain-specific information.

Table 3: Multi-class music

genre classification
method Error Top-2 Error F1 Top-2 F1

gapped 34.5±2.6 19.9±2.27 65.35 80.31

double 29.2±1.61 17.5±1.77 70.82 82.62

triple 29.3±1.86 17.3±1.89 70.61 82.78

Table 4: Artist recognition per-

formance
method Error Top-2 Error F1 Top-2 F1

gapped 44.66 32.24 55.33 67.99

double 32.50 21.51 67.56 78.63

triple 32.69 21.15 67.43 78.67

Table 5: Running time (s) for kernel com-

putation between two strings on real data
protein (semi-sup) text music

n, |Σ| 36672, 20 242, 29224 6892, 1024

(5,1)-mismatch 1.6268 20398 526.8

subseq. (p=3) 1222.4 0.4846 2.4321

Spatial kernel

(triple)
0.1967 7.5e-03 3.45e-02

*n-sequence length, |Σ|-alphabet size

Running time. One important benefit of our approach lies in the computational efficiency of evaluating similarity of

sequences (kernel values). As shown in Table 5, both double and triple kernels demonstrate order of magnitude running

time improvements over other algorithms.
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