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Finding motifs or repeated patterns in data is of wide scientific interest [11, 8, 5, 6]. For example, elucidating
motifs in DNA sequences is a critical first step in understanding biological processes as basic as the RNA transcription.
There, the motifs can be used to identify promoters, the regions in DNA that facilitate the transcription. Finding motifs
can be equally crucial for analyzing interactions between viruses and cells or identification of disease-linked patterns.
Discovery of motifs in music sequences, text, or time series data is a fundamental, general means of summarizing,
mining and understanding large volumes of data. In this work, we develop algorithms that (1) improve search efficiency
compared to existing algorithms, (2) have complexity that does not depend on the alphabet set size, (3) are exact
(exhaustive) and deterministic.

For the purpose of this study, motifs are (short) patterns that occur in an exact or approximate form in all or most of
the strings in a data set. Consider a set of input strings S of size N = |S| constructed from an alphabet Σ. The solution
for the (k, m,Σ, N)-motif finding problem (Figure 1) is the set M of k-mers (substrings of length k), M ⊆ Σk, such
that each motif a ∈ M, |a| = k, is at Hamming distance at most m from all (or almost all) strings s ∈ S.

Figure 1: The motif search problem.

A number of approaches have been proposed for efficient motif search, including graph methods (WINNOWER) [8],
explicit trie traversal (MITRA) [3], explicit mapping (Voting algorithms) [1], suffix trees [10], sorting and enumera-
tion [2], etc. Existing exhaustive algorithms use explicit exploration of the motif space and require time proportional
to the size of the neighborhood of a k-mer, i.e., the number of sequences at Hamming distance at most m away from
it. This size, V (m, k) =
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)
(|Σ| − 1)i, depends on the alphabet size, and can lead to high computational

complexity and running times, as shown in Table 1.
Table 1: Exact algorithms for motif search

Algorithm Time Complexity Space Complexity
SPELLER [10] O(nN2V (m, k)) O(nN2/w)
MITRA [3] O(knNV (m, k)) O(nNk)
CENSUS [4] O(knNV (m, k)) O(nNk)
Voting [1] O(nNV (m, k)) O(nV (m, k))
RISOTTO [9] O(nN2V (m, k)) O(nN2)
PMS [2] O(n2NV (m, k)) O(n2N)

In contrast to existing exact exhaustive algorithms, we approach the problem of motif finding by performing an
efficient implicit search. This search does not depend on the alphabet size, making the new algorithms applicable
to many practical applications that require analysis of large-|Σ| sequences. We build this approach upon our recent
work [7] where we show how to count the number of k-mers shared by two sequences based on a combinatorial
argument. Here we extend this argument to efficiently find a fixed set of stems, patterns with wildcards, that represent
this shared set of k-mers. The number of stems necessary to describe the intersection of neighborhoods for two k-mers
at Hamming distance d(a, b) can be shown to be
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)
and does not depend on the alphabet size.
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Table 2: Running time as a function of alphabet size |Σ|. (k, m) instances denote implanted motifs of length k with
up to m substitutions.

|Σ| (9,2) instance (11,3) instance (13,4) instance (15,5) instance
MITRA, s Stemming, s MITRA, s Stemming, s MITRA, s Stemming, s MITRA, s Stemming, s

4 0.89 1.926 17.99 7.468 202.47 64.338 1835 423
20 8.39 0.637 1032.17 1.07 28905 5.247 - 45.66
50 89.82 0.633 12295.73 0.963 685015 2.244 - 27.26
100 265.94 0.645 - 0.967 > 1 month 2.227 - 27.1

The main idea of our approach is to first construct a candidate set C which will include all motifs M but also some
non-motifs, i.e. M ⊆ C, and then efficiently select true motifs from the candidate set. Given C, the complexity of
motif finding is then proportional to its size: the motifs can be extracted from C by checking each candidate against
the motif property, a task accomplished using

(
k
m

)
rounds of counting sort. To generate C we collect the sets of stems

which characterize the common neighbors of all observed pairs of k-mers (a, b). We call these sets the seed sets,
H(a, b). As alluded to before, finding each H(a, b) is independent of the alphabet size. We construct seed sets for all
pairs of k-mers a, b at Hamming distance of at most 2m from every string (i.e. potential motif instances).

We evaluated our algorithms on the planted motif problem, a task where synthetic motifs are injected in otherwise
motif-less strings. For this problem, we follow the standard setting used in previous studies and synthesize N = 20
random strings of length n = 600 using iid, uniformly distributed symbols from an alphabet of size |Σ|. We then
embed a copy (with up to m substitutions at random positions) of a motif at a random location in every string. Results
in Table 2 show significant reduction in running times compared to state-of-the-art methods, especially for large-|Σ|
inputs. We are currently running experiments to evaluate our approach on variety of other data and tasks including
music data for genre and artist identification. The output of our algorithm can be used as an input to other algorithms
for more detailed analysis, for example, filtering based on significance, discriminative motif search using negative
input sets, functional annotation, etc.
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