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Kernel-based learning methods provide some of the mostatectesults in many sequence analysis and predic-
tion tasks [1, 2, 4, 6]. However, the improved accuracy ismfichieved at the cost of high computational complexity
of training and prediction. We propose a new family of thengibased kernel classification methods for the se-
guence analysis tasks that offer low computational costdisplay the state-of-the-art performance. We illustrate
our approach on protein remote homology classification lerab [2, 3, 5, 7] under supervised and semi-supervised
settings.

In contrast to traditional string kernels, spatially-coamed sample kernels sample the sequence features at mul-
tiple resolutions, establishing the similarity measureoas different scales, with potentially highly diverse arut
tion/insertion/deletion process. In particular, the le@dsi< (-, -|k, ¢, d) have the following form

K(X,Y“f,t,d) = Z C(al,dl,ag,dg,...,dt_l,at|X)C(a1,d1,a2,d2,...,dt_l,at|Y)

a,l,...,atEEk
d1,...,di—1€{0,1,...,d—1}

whereC(ay,dy, ag,ds, ..., di—1,a:| X) is the number of times substrings dy as <d—2>, e dy a; (a; separated by
d; characters frona, separated byi, characters fronas etc.) occurring in the sequenéé. Each sample consists of
t spatially-constrained probes of sizek, with the probes spatially constrained to lie no more ttigrositions away
from their neighbors. In the proposed kernels, parameteontrols the individual probe size, parametecontrols
the locality of the sample, and parametecontrols the cardinality of the sampling neighborhood. Fatance,
k = 1,t = 2 denote kernels constructed from pairs of monomess 3 triples of monomers, etc.

The proposed sample string kernels, unlike the spectrkekérnels (e.g. exact spectrum or mismatch kernels [4]),
not only take into account the feature counts, but also dekpatial configuration information, i.e. how the features
are distributed in the sequence. The addition of the spafiaimation can be critical in establishing similarity of
sequences under complex transformations such as the iewizlnt processes in protein sequences. Interestingly, ver
short sequence features (we use only one-character-lomgmers) achieve performance better than the standard
string kernels with longer but spatially more constraintihg features.

The possibility of using short featureg can also lead to significantly lower computational compieaf comput-
ing the new kernels. The resulting feature spaces haveantizty fewer dimensions: 2000 and 72000 for double and
triple kernels, respectively, compared to 3200000 of thenpeting non-spatial string kernels (spectrum/mismatch
kernels.) As a consequence, the proposed kernels can biergfficcomputed using a sorting and counting ap-
proach. The total complexity for a set &f sequences can be shown to ®&inN + min(u,dn)N?) for doubles
andO(d*nN + min(u, d?n)N?) for triples, whereu is the number of unique features. This can be significantielo
than the exponential complexity of the mismatch ke@et™+!|S|™nN + min(u’,n)N?), whereu' < |3|¥, and
k=5,6.

We demonstrate the utility of the new kernel in the sequetassification setting of the protein remote homology
prediction task. The analysis is conducted on the benchssiRCOP 1.59 of the protein sequences widely used in the
literature [5, 4, 2]. This dataset includes 7329 sequermdyg 862 are labeled), with the labeled sequences classifie
into 54 families, resulting in 54 detection problems. In pewised setting, only labeled sequences participate in
experiments. In a semi-supervised setting, unlabeledesemps are used to refine the kernel during training/testing.
The performance of the proposed kernels is contrasted foréhvously published results [2, 4, 5] under the supervised
setting in Table 1, with the accompanying ROC-50 plots iruFégl. The results indicate that the classifiers learned
from the new kernel family significantly outperform, bothancuracy and in computational time, the state-of-the-art
approaches. Similar improvements are observed in the spergised context of [7]. Table 2 and Figure 2 show that
the triple kernel outperforms both the profile [2] and the mmégch neighborhood kernels [7] which are reported to
perform best in previous studies.
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Table 1: Comparison of the performance on the SCOFable 2: Comparison of the performance under the semi-
1.59 dataset under the supervised setting.

supervised setting.

Method ROC ROC50 #dim. Time (s) Method ROC ROC50
(5, 1)-mismatch  0.8749 0.4167 3200000 938 (5, 1)-mismatch neighborhood 0.9093 0.6745
SVM-pairwise 0.8930 0.4340 - - (5,7.5)-profile 0.9190 0.6069
Fisher 0.7730 0.2500 - - (1,5)-double 0.9131 0.6279
(1,5) double 0.8901 0.4629 2000 54 (1,3)-triple 0.9207 0.7273
(1,3) triple 0.9148 0.5118 72000 112
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Figure 1: Comparison of the performance (ROC50) in &igure 2: Comparison of the performance (ROC50) in
supervised setting. Spatial kernels (triples and doublea)semi-supervised setting. Spatial triple kernel outper-
forms both profile and mismatch neighborhood kernels.

outperform other supervised methods.

The new class of spatially-constrained sparse kernelsgsated to scale well and work with the large unlabeled
datasets (e.g. nonredundant datasets of protein seqyémcesny other challenging semi-supervised sequence clas-

sification settings.

References

[1] Jianlin Cheng and Pierre Baldi. A machine learning infation retrieval approach to protein fold recognitidioinformatics, 22(12):1456—

1463, June 2006.

[2] Rui Kuang, Eugene le, Ke Wang, Kai Wang, Mahira Siddigha¥ Freund, and Christina Leslie. Profile-based string ésrfor remote
homology detection and motif extraction. @SB '04: Proceedings of the 2004 |IEEE Computational Systems Bioinformatics Conference

(CB'04), pages 152-160, August 2004. http://www.cs.columbidceapbio/profile-kernel.

[3] Christina Leslie and Rui Kuang. Fast string kernels gsirexact matching for protein sequencésMach. Learn. Res., 5:1435-1455, 2004.
[4] Christina S. Leslie, Eleazar Eskin, Jason Weston, arltiai Stafford Noble. Mismatch string kernels for svm piiatelassification. IlNIPS

pages 1417-1424, 2002.
5

[6

[7

cluster kernels. INIPS, 2003.

Li Liao and William Stafford Noble. Combining pairwiseequence similarity and support vector machines for detgctemote protein
evolutionary and structural relationshipiournal of Computational Biology, 10(6):857-868, December 2003.

Soren Sonnenburg, Gunnar Ratsch, and Bernhard Eabil Large scale genomic sequence svm classifierBCML ’ 05: Proceedings of the
22nd international conference on Machine learning, pages 848-855, New York, NY, USA, 2005. ACM Press.

Jason Weston, Christina S. Leslie, Dengyong Zhou, Ariflisseeff, and William Stafford Noble. Semi-superviseot@in classification using



