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Kernel-based learning methods provide some of the most accurate results in many sequence analysis and predic-
tion tasks [1, 2, 4, 6]. However, the improved accuracy is often achieved at the cost of high computational complexity
of training and prediction. We propose a new family of the string-based kernel classification methods for the se-
quence analysis tasks that offer low computational cost anddisplay the state-of-the-art performance. We illustrate
our approach on protein remote homology classification problems [2, 3, 5, 7] under supervised and semi-supervised
settings.

In contrast to traditional string kernels, spatially-constrained sample kernels sample the sequence features at mul-
tiple resolutions, establishing the similarity measure across different scales, with potentially highly diverse muta-
tion/insertion/deletion process. In particular, the kernelsK(·, ·|k, t, d) have the following form

K(X, Y |k, t, d) =
∑

a1,...,at∈Σ
k

d1,...,dt−1∈{0,1,...,d−1}

C(a1, d1, a2, d2, ..., dt−1, at|X)C(a1, d1, a2, d2, ..., dt−1, at|Y )

whereC(a1, d1, a2, d2, ..., dt−1, at|X) is the number of times substringsa1

d1↔ a2

d2↔, ...,
dt−1

←→ at (a1 separated by
d1 characters froma2 separated byd2 characters froma3 etc.) occurring in the sequenceX . Each sample consists of
t spatially-constrained probesai of sizek, with the probes spatially constrained to lie no more thand positions away
from their neighbors. In the proposed kernels, parameterk controls the individual probe size, parameterd controls
the locality of the sample, and parametert controls the cardinality of the sampling neighborhood. Forinstance,
k = 1, t = 2 denote kernels constructed from pairs of monomers,t = 3 triples of monomers, etc.

The proposed sample string kernels, unlike the spectrum-like kernels (e.g. exact spectrum or mismatch kernels [4]),
not only take into account the feature counts, but also include spatial configuration information, i.e. how the features
are distributed in the sequence. The addition of the spatialinformation can be critical in establishing similarity of
sequences under complex transformations such as the evolutionary processes in protein sequences. Interestingly, very
short sequence features (we use only one-character-long monomers) achieve performance better than the standard
string kernels with longer but spatially more constrained string features.

The possibility of using short featuresai can also lead to significantly lower computational complexity of comput-
ing the new kernels. The resulting feature spaces have substantially fewer dimensions: 2000 and 72000 for double and
triple kernels, respectively, compared to 3200000 of the competing non-spatial string kernels (spectrum/mismatch
kernels.) As a consequence, the proposed kernels can be efficiently computed using a sorting and counting ap-
proach. The total complexity for a set ofN sequences can be shown to beO(dnN + min(u, dn)N2) for doubles
andO(d2nN + min(u, d2n)N2) for triples, whereu is the number of unique features. This can be significantly lower
than the exponential complexity of the mismatch kernelO(km+1|Σ|mnN + min(u′, n)N2), whereu′ ≤ |Σ|k, and
k = 5, 6.

We demonstrate the utility of the new kernel in the sequence classification setting of the protein remote homology
prediction task. The analysis is conducted on the benchmarkset SCOP 1.59 of the protein sequences widely used in the
literature [5, 4, 2]. This dataset includes 7329 sequences (only 2862 are labeled), with the labeled sequences classified
into 54 families, resulting in 54 detection problems. In a supervised setting, only labeled sequences participate in
experiments. In a semi-supervised setting, unlabeled sequences are used to refine the kernel during training/testing.
The performance of the proposed kernels is contrasted to thepreviously published results [2, 4, 5] under the supervised
setting in Table 1, with the accompanying ROC-50 plots in Figure 1. The results indicate that the classifiers learned
from the new kernel family significantly outperform, both inaccuracy and in computational time, the state-of-the-art
approaches. Similar improvements are observed in the semisupervised context of [7]. Table 2 and Figure 2 show that
the triple kernel outperforms both the profile [2] and the mismatch neighborhood kernels [7] which are reported to
perform best in previous studies.
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Table 1: Comparison of the performance on the SCOP
1.59 dataset under the supervised setting.

Method ROC ROC50 # dim. Time (s)

(5, 1)-mismatch 0.8749 0.4167 3200000 938
SVM-pairwise 0.8930 0.4340 - -
Fisher 0.7730 0.2500 - -
(1,5) double 0.8901 0.4629 2000 54
(1,3) triple 0.9148 0.5118 72000 112

Table 2: Comparison of the performance under the semi-
supervised setting.

Method ROC ROC50

(5, 1)-mismatch neighborhood 0.9093 0.6745
(5,7.5)-profile 0.9190 0.6069
(1,5)-double 0.9131 0.6279
(1,3)-triple 0.9207 0.7273
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Figure 1: Comparison of the performance (ROC50) in a
supervised setting. Spatial kernels (triples and doubles)
outperform other supervised methods.
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Figure 2: Comparison of the performance (ROC50) in
a semi-supervised setting. Spatial triple kernel outper-
forms both profile and mismatch neighborhood kernels.

The new class of spatially-constrained sparse kernels is expected to scale well and work with the large unlabeled
datasets (e.g. nonredundant datasets of protein sequences) in many other challenging semi-supervised sequence clas-
sification settings.
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