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Abstract

String kernel-based machine learning methods have
yielded great success in practical tasks of struc-
tured/sequential data analysis. They often exhibit
state-of-the-art performance on tasks such as docu-
ment topic elucidation, music genre classificatioin, pro-
tein superfamily and fold prediction. However, typi-
cal string kernel methods rely on symbolic Hamming-
distance based matching which may not necessarily re-
flect the underlying (e.g., physical) similarity between
sequence fragments. In this work we propose a novel
computational framework that uses general similarity
metrics S(-,-) and distance-preserving embeddings with
string kernels to improve sequence classification. In par-
ticular, we consider two approaches that allow one ei-
ther to incorporate non-Hamming similarity S(-,) into
similarity evaluation by matching only the features that
are similar according to S(-,-) or to retain actual (ap-
proximate) similarity/distance scores in similarity eval-
uation. An embedding step, a distance-preserving bit-
string mapping, is used to effectively capture similarity
between otherwise symbolically different sequence ele-
ments. We show that it is possible to retain computa-
tional efficiency of string kernels while using this more
“precise” measure of similarity. We then demonstrate
that on a number of sequence classification tasks such
as music, and biological sequence classification, the new
method can substantially improve upon state-of-the-art
string kernel baselines.

Keywords: string kernels, classification, sequence
analysis

1 Introduction

Analysis of large scale sequential data has become an
important task in machine learning and data mining,
inspired by applications such as biological sequence
analysis, text and audio mining. Classification of
string data, sequences of discrete symbols, has attracted
particular interest and has led to a number of new
algorithms [3, 8, 14, 18]. These algorithms often
exhibit state-of-the-art performance on tasks such as
protein superfamily and fold prediction, music genre
classification and document topic elucidation.

A family of state-of-the-art approaches to scoring
similarity between pairs of sequences relies on fixed
length, substring spectral representations and the no-
tion of mismatch kernels, c.f. [8, 14]. There, a se-
quence is represented as the spectra (counts) of all short
substrings (k-mers) contained within a sequence. The
similarity score is established by exact or approximate
matches of k-mers. Initial work, e.g., [14, 17], has
demonstrated that this similarity can be computed us-
ing trie-based approaches in O(k™ %™ (|X| + |Y])),
for strings X and Y with symbols from alphabet 3 and
up to m mismatches. More recently, [10] introduced
linear time algorithms with alphabet-independent com-
plexity applicable to computation of a large class of ex-
isting string kernels.

However, typical spectral models (e.g., mis-
match/spectrum kernels, gapped and wildcard kernels)
rely on symbolic Hamming-distance based matching of
k-mers. For example, given a sequence X over alphabet
Y the spectrum-k kernel [13] and the mismatch-(k,m)



kernel [14] induce |Y|*-dimensional representation
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where I,,(a,y) = 1 if & € Ni (), and Ny, (77) is the
mutational neighborhood of -y, the set of all k-mers that
differ from « by at most m mismatches ( note that the
indicator function Iy, ,, (-, -) only uses symbolic Hamming
distance between k-mers.

This Hamming matching may not necessarily re-
flect the underlying (e.g., physical) similarity between
sequence fragments. For example, in protein sequence
analysis different pairs of symbols (amino acids) induce
different similarity levels, a consequence of particular
physical or chemical properties. Similarly, matching of
n-grams of words should reflect semantic similarity and
not only simple character-level differences. Unfortu-
nately, traditional string kernel approaches do not read-
ily extend to the case of general non-Hamming similarity
metrics without introducing a high computational cost
(e.g., requiring quadratic or exponential running time).
Another difficulty with using S(-, ) instead of I,,(-,-) is
that the resulting similarity measure may not necessar-
ily be a proper kernel.

In this work we propose novel linear-time algo-
rithms for modeling sequences under inexact matching
framework with general similarity metrics S(-,-) that
exhibit improved performance on a variety of distinct
classification tasks. In particular, we present a novel
computational framework that (1) accepts a general
(non-Hamming) similarity metric S(-,-), (2) approxi-
mately preserves S(-,-) through symbolic binary em-
bedding of k-mers, and (3) uses Hamming-type match-
ing on the embedded representation with string ker-
nels (linear-time algorithms) to improve sequence clas-
sification. The adaptive embedding step, which learns
the similarity /distance-preserving embeddings, is used
to effectively capture similarity interrelationships be-
tween otherwise symbolically dissimilar sequence ele-
ments/features.

We demonstrate benefits of our algorithms on
many challenging sequence classification problems, both
discrete- and continuous-valued, such as detecting ho-
mology (evolutionary similarity) of remotely related
proteins, recognizing protein fold, and performing clas-
sification of music samples. The algorithms display im-
proved classification performance and run substantially
faster than existing methods.

2 Related Work

Over the past decade, various methods have been
proposed to solve the string classification problem,

including generative, such as HMMs, or discriminative
approaches. Among the discriminative approaches, in
many sequence analysis tasks, string kernel-based [19]
methods provide some of the most accurate results [8,
14, 18, 12, 4].

The key idea of basic string kernel methods is to ap-
ply a mapping ®(-) to map sequences of variable length
into a fixed-dimensional vector space. In this space a
standard classifier such as a support vector machine
(SVM) [19] can then be applied. As SVMs require only
inner products between examples in the feature space,
rather than the feature vectors themselves, one can de-
fine a string kernel which computes the inner product
in the feature space without explicitly computing the
feature vectors:

(22) K(X,Y) = (2(X), ®(Y)),

where X, Y € D, D is the set of all sequences composed
of elements which take on a finite set of possible values
from the alphabet X.

Sequence matching is frequently based on co-
occurrence of exact sub-patterns (k-mers, features), as
in spectrum kernels [13] or substring kernels [20]. Inex-
act comparison in this framework is typically achieved
using different families of mismatch [14] or profile [8]
kernels. Both spectrum-k and mismatch(k,m) kernel
directly extract string features from the observed se-
quence, X. On the other hand, the profile kernel, pro-
posed by Kuang et al. in [8], builds a profile [6] Px
and uses a similar |X|¥-dimensional representation, now
derived from Pyx. Constructing the profile for each se-
quence may not be practical in some application do-
mains, since the size of the profile is dependent on the
size of the alphabet set. While for bio-sequences |X| = 4
or 20, for music or text classification |X| can potentially
be very large, on the order of tens of thousands of sym-
bols.

Some of the most efficient available trie-based al-
gorithms [14, 17] for mismatch kernels have a strong
dependency on the size of alphabet set ¥ and the num-
ber of allowed mismatches, both of which need to be
restricted in practice to control the complexity of the
algorithm. Under the trie-based framework, the list of
k-mers extracted from given input strings is traversed in
a depth-first search with branches corresponding to all
possible o € ¥.. Each leaf node at depth k corresponds
to a particular k-mer feature (either exact or inexact
instance of the observed exact string features) and con-
tains a list of matching features from each string. The
kernel matrix is updated at leaf nodes with correspond-
ing matching feature counts. The complexity of the
trie-based algorithm for mismatch kernel computation
for two strings X and Y is O(k™ TS| (| X|+Y])) [14].



The algorithm complexity depends on the size of 3 since
during a trie traversal, possible substitutions are drawn
from ¥ explicitly; consequently, to control the complex-
ity of the algorithm we need to restrict the number of
allowed mismatches m, as well as |3].

We note that most of existing k-mer string kernels
(e.g., mismatch /spectrum kernels, gapped and wildcard
kernels, c.f. [12]) essentially use only symbolic Hamming-
distance based matching, which may not necessarily re-
flect underlying similarity /dissimilarity between k-mers.
For a large class of k-mer string kernels, which in-
clude mismatch/spectrum, gapped, wildcard kernels,
the matching function, I(a, ), of two k-mers « and
B is independent of the actual k-mers being matched
and depends only on the Hamming distance [10]. As
a result, related k-mers may not be matched because
their symbolic dissimilarity exceeds the maximum al-
lowed Hamming distance. This presents a limitation as
in many cases similarity relationships are not entirely
based on symbolic similarity, e.g., as in matching word
n-grams or amino-acid sequences, where, for instance,
words may be semantically related or amino-acids could
share structural or physical properties not reflected on a
symbolic level. Recent work in [10] have introduced lin-
ear time algorithms with alphabet-independent complex-
ity for Hamming-distance based matching. This enables
efficient computation of a wide class of existing string
kernels for datasets with large |X|. However, above ap-
proaches do not readily extend to the case of a gen-
eral (non-Hamming) similarity metrics (e.g., BLOSUM-
based scoring functions in biological sequence analy-
sis, or measures of semantic relatedness between words,
etc.) without introducing a high computational cost
(e.g., requiring quadratic or exponential running time as
in, for instance, BLOSUM-based substitution kernels).
In this work, we aim to extend the works presented
in [10, 12] to the case of general (non-Hamming) simi-
larity metrics and introduce efficient linear-time gener-
alized string kernel algorithms (Sections 4, 5). We also
show empirically that using these generalized similar-
ity kernels provides effective improvements in practice
for a number of challenging classification problems (Sec-
tion 6).

3 Spectrum/Mismatch and General Similarity
Kernels

In this section we will first discuss sequence matching
with spectrum/mismatch kernels and then introduce
general similarity string kernels as their generalization.

Given a sequence X over the alphabet X the
spectrum-k kernel [13] and the mismatch(k,m) ker-
nel [14] induce the following |%|¥-dimensional represen-

tation for the sequence X considered as a set of k-mers:

(33)  Prm(y]X) = <ZI )
yeESk

acX
where L, (a,v) = 1 if & € Ni (), and Ny () is the
mutational neighborhood, the set of all k-mers that dif-
fer from ~« by at most m mismatches. Note that, by
definition, for spectrum-k kernels, m = 0. Effectively,
these are the bag-of-substrings representations, with ei-
ther exact (spectrum) or approximate/smoothed (mis-
match) counts of substrings present in the sequence X.
The spectrum/mismatch kernel is then defined as

K(X’Ylk’m) = Z (I)k,m(’)/‘X)(I)k,m(’)/‘Y)
yEXk
(3.4) = > > InlaNIn(B7)

acX BEY yexk

One interpretation of this kernel is that of cumu-
lative pairwise comparison of all k-long substrings
a and [ contained in sequences X and Y, respec-
tively. In the case of mismatch kernels the level of
similarity of each pair of substrings («, ) is based
on the number of identical substrings their muta-
tional neighborhoods Ny, («) and Ny ,,(5) give rise to,
> esk Im (@, 7) I (B, ). For the spectrum kernel, this
similarity is simply the exact matching of o and .

One can generalize this and allow an arbitrary met-
ric similarity function S(«, 3) to replace the Hamming
similarity »_ csu Im (o, 7)Im(B,7) — S(a, B) and ob-
tain general similarity kernel:

> S(a,B).

acX BeY

(3.5) K(X,Y|k,S) =

Such similarity function can go significantly beyond
the relatively simple substring mismatch (substitution)
models mentioned above. However, a drawback of
this general representation over the simple Hamming-
similarity based mismatch model is, of course, that
the complexity of comparing two sequences in general
becomes quadratic in their lengths, O(]X|-|Y]). On the
other hand, mismatch type of representations can be
efficiently evaluated in O(c ., (| X|+]Y])) time [10]. We
also note that directly using Eq. 3.5 will not, in general,
result in a proper kernel K(X,Y|k,S) for arbitrary
similarity metric S(-,-).

Our goal here is to approach the above process “in
reverse”: start with a general similarity metric S and
replace it with an approximate, but computationally
efficient, Hamming-type computation. In the following
we consider two approaches for incorporating S(-, -) into
sequence matching that preserve linear time complexity



of kernel computation and result in a proper kernel
function K(X,Y|S). The first approach (Sec. 4) uses
S(+,-) indirectly by clustering the original feature set
into groups of similar features. These groups are then
used for matching, with two features matched only if
they belong to same group (i.e. are similar according
to S(-,+)). In the second approach (Section 5), based
on recent work in similarity-based hashing in [21], an
approximation of the actual values of S(-,) is used for
the similarity score computation. The two approaches
allow one either to incorporate non-Hamming similarity
S(-,+) into similarity evaluation by matching only the
features that are similar according to S(-,-) or to
retain actual (approximate) similarity/distance scores
in similarity evaluation.

4 Abstraction-based kernels

In this section we propose a generalization of the string
kernels that extends the typically employed symbolic
Hamming (0-1) distance and incorporates general sim-
ilarity metrics to refine matching of otherwise symboli-
cally different sequence fragments.

Standard string kernels typically use input se-
quences directly, i.e., they are defined over the input
alphabet |X|. Here we assume that the alphabet ¥ is
supplemented by a set of features F. For instance, in
the case of proteins the 20 amino acids can be supple-
mented by ordinal features that describe their physical
or chemical properties. Note that the feature set need
not be specified explicitly, it is sufficient to define the
similarity metric S(a, 8) that reflect symbol similarity
in this feature space.

To incorporate a similarity metric S(«, ) into
string kernel framework, one possibility is to introduce
an indicator (matching) function Is(a, ) that models
the given scoring metric by defining a partition over the
feature set (e.g., the set of all k-mers), which groups
similar (according to S(-,-)) features together. The
indicator function Is(-,) would only match two k-mers
« and S if they belong to the same class, i.e. are similar
according to S(a, ). Partitioning of the feature set
F essentially corresponds to clustering over the feature
set that generates more abstract entities (features).
Similar features that are grouped together can, for
instance, indicate semantic closeness of words in text, or
similarity in terms of physical or structural properties
for amino-acids in biological sequences, etc. Grouping
of features into similarity classes might also allow for
better generalization over learned sequence patterns and
improve sequence classification performance.

For a given feature set F (e.g., set of k-mers over
alphabet X or the alphabet X itself), with similarity re-
lationships between features in F encoded as a partition

put e (@)
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Figure 1: Abstraction-based kernel (F is the same as 3).
Both the input sequence X and the abstracted sequence
L(X) can be used simultaneously.

over F, i.e. in n disjoint cluster sets C1,...,C,, JC; =
F. Let L : F — {C4,...,C,} be the cluster (par-
tition) indicator function. The abstraction/clustering-
based kernel under L() can then be defined as

KL(X,Y) =YY "Is(e,y) Y Is(B,7)

~YEF aeX BeEY

=3 > Is(e,y)Is(8,7)
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(4.6)

where the indicator Is() reflects grouping over features
induced by similarity measure S(-,-), Is(a,8) = 1, if
L(a) = L(B) and 0 otherwise. We note that the two
k-mers o and 8 will be matched only if they belong
to the same group, L(a) = L(B), i.e. « and S are
similar according to S(.,.). This allows one to incor-
porate non-Hamming similarity relationships between
k-mers into the similarity/kernel evaluation. Similarity
function S(a, §) between k-mers can be the Euclidean
distance between the corresponding real-valued feature
vectors, or may reflect similarity with respect to the
physical/structural properties. Clustering of these fea-
ture vectors would then group the original k-mer fea-
tures into groups of k-mers similar according to S(-, ).
We note that this essentially corresponds to a kernel de-
fined over clustered representation X¢o = L(X) of the
original sequence X, where X¢ is obtained from X by
mapping original sequence features into corresponding
similarity clusters C1,...C,. This is illustrated in Fig-
ure 1 for the case of feature space F taken as an al-
phabet set. We note that the cluster indicator function
L(-) can be obtained by clustering of the feature vec-
tors corresponding to the original features in F, e.g.
rows of the BLOSUM substitution matrix can be used
to cluster individual aminoacids or aminoacid k-mers
according to the Euclidean distance/similarity S(-,-) be-
tween feature vectors. Alternatively, the partition over
F can be defined with respect to similarity S(-,-) as
given by the physical/chemical properties of aminoacids
(e.g., L() could be defined as a threshold function based
on the hydropathy index). We show in experiments that
using abstraction/clustering kernel improves over using
original sequences alone.



5 Similarity/distance-preserving
Embedding Kernels

While the abstraction/clustering-based kernel described
in previous sections essentially uses a fixed partition
over features, one may wish to retain the actual dis-
tance/score as given by S(,-). For a given scoring
function S(a, B) that reflects the semantic similarity be-
tween sequence elements, a string kernel can then be
defined as in Eq.3.5.

That definition, however, results in quadratic com-
putation O(|X| - |Y|) complexity. We will now define
a computationally more efficient string kernel based on
symbolic sequence embeddings for which Hamming (0-
1) similarity accurately approximates S(-,-). This will
allow us to develop a linear time algorithm for comput-
ing string kernels with general similarity metrics.

The main idea of our approach is to (1) learn a
symbolic embedding F(-) for which the Hamming simi-
larity could approximate S(-,-), (2) use Hamming-type
matching (linear time) algorithms over the symbolic
embedding to efficiently evaluate the similarity kernel
K(X,Y|S).

To learn a symbolic embedding that approximates
S(-,+), a similarity hashing-based approach, as in, for
instance [21], could be applied to sequence features (e.g.,
k-mers or individual sequence elements) to obtain a
binary Hamming-space embedded sequence

Symbolic

for a given input sequence X = x1,...,x, of R-
dimensional feature vectors, where E(x;) = eie}...eh
is a symbolic Hamming embedding for item z; in X,
with |E(x;)] = B, the number of bits in a resulting
binary embedding of x;. Under this embedding, the
Hamming similarity, hq, g, between two feature embed-
dings FE(«) and E(p) is proportional to the original sim-
ilarity score S(«, 3). The kernel evaluation K (X,Y|S)
(Eq. 3.5) then reduces to computing Hamming-type
string kernels K'(E(X), E(Y)) (e.g., spectrum or mis-
match) over embedded sequences E(X), E(Y). For a
typical length of a Hamming embedding (e.g., B=64),
computing the k-mer mismatch kernel may be diffi-
cult due to very large equivalent values of ¥’ = k- B,
m’ = m - B since the complexity of the best string ker-
nel algorithms depends as O(k™) on the values of k, and
m. To solve this problem, in what follows we develop
a very effective approximation of the mismatch kernel
that allows efficient inexact matching between embed-
ded sequences.

5.1 Approximate Mismatch Kernel for Sym-
bolic Hamming Embeddings Instead of solving a
(kB,mB)-mismatch problem, we will show that a col-
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Figure 2: Symbolic embedding for similarity evaluation.
For discrete inputs, discrete-to-real mapping M(:) is
used to obtain sequence X of R-dim. feature vectors
that are then embedded into B-bit vectors to obtain
E(X). Feature map ®(E(X)) yields B x 2* representa-
tion of the original sequence that is used for similarity
evaluation. For real-valued inputs, the M-step is not
used.

lection of B simpler (k,m)-mismatch problems could be
solved. This will allow a very efficient inexact matching
for even high-dimensional embeddings, F.

For a given sequence set D, where each X € D
is a sequence of R-dimensional feature vector, let & =
{E(X): X € D}. In the following, we describe a kernel
measure, K(E(X),E(Y)), for computing similarity
between two Hamming embeddings F(X), E(Y) of the
original sequences X and Y. To do this we note that
our binary embedding of each sequence X results in this
sequence being represented as a B x |X| binary matrix,
with each column [ being the binary embedding of the -
th element x;. The rationale for the choice of Kj below
will be discussed in detail in Sec. 5.3.

To compare two embeddings E(X) and E(Y) (i.e.,
two binary matrices of size B x | X|, B x |Y]), we define
a feature map @, from £ into a B x 2F dimensional
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where ¢! (E(X)) = > acn(x) L(afb],7) is the number
of times 7 occurs in the b** row of E(X) matrix. The
kernel is then the dot-product between corresponding
feature maps:

feature space @y, :

(6.7 o(EX)) =

(5.8)  EKi(E(X),E(Y)) = (Px(E(X)), ®x(E(Y))).

In Figure 2 we illustrate similarity evaluation using
similarity-preserving symbolic embedding. Discrete in-
puts are first mapped into a sequence of R-dimensional
feature vectors (M()-step, e.g. by replacing discrete
amino acid characters with rows of BLOSUM substi-
tution matrix). Those feature vectors are then mapped
using E() into binary vectors to obtain a B x | X | matrix
representation of the original sequence. These binary

matrices are then compared using Ky(-,-).

5.2 Efficient Kernel Computation We first re-
duce the kernel computation (Eq.5.8) to the following
form.

(5.9) Kp(E(X),E(Y)) = (2x(E(X)), 2x(E(Y)))
B
:Z Z I(a[b]v’)/) Z I(ﬁ[b}?'y)
b=1~€{0,1}* \acE(X) BEE(Y)
B
(5.10) =Y Y I(alol, B10])
b=1 acB(X) BEE(Y)
(5.11) = > Y ZI

a€E(X) BEE(Y) b=1

We note that the kernel value above corresponds to the
cumulative count of the number of common rows in «
and 8. Le., for each pair of B x k submatrices («,8) the
kernel value is incremented by the number of rows that
are identical. Direct use of the Eq. 5.11 would result
in quadratic time kernel evaluation. A more efficient
approach is to note that the number of pairs of B x k
submatrices (a,8) from E(X) and E(Y') that have the
same bth row can be computed by running the exact
spectrum-k kernel B times, i.e. for each row b = 1...B
of E(X) and E(Y). This gives a linear time O(Bnk)
algorithm for comparing the embedded representations
E(X) and E(Y). This is an improvement over directly
using O(ckp,mpnk) mismatch kernel algorithm for inex-
act matching as the above linear-time row-based com-
parison between two B x k submatrices in effect cor-
responds to ineract matching of these matrices. We
also note that the computational complexity O(Bkn)

of evaluating K(X,Y|S) compares well with computa-
tional complexity of typical Hamming-based string ker-
nels [12] (e.g., O(C(g,k)kn) of the gapped kernel, or
O(k™*1|3|™n) of the mismatch kernel).

The described algorithm has linear complexity com-
pared to quadratic complexity of evaluating general ker-
nel of the form as in Equation 3.5. Furthermore, the
approach we propose is substantially different from trie-
based approaches described, for example, in [12] for com-
puting e.g. substitution kernels that use biologically
meaningful similarity measure based on probabilistic
substitution models.

In summary, the proposed algorithms exhibit the
following advantages:

e Enhances original discrete/symbolic or real-valued
representation by re-representing sequence data us-
ing different sequence alphabet that captures inter-
relationships between individual sequence elements
or features (e.g., k-mers).

o Allow efficient (linear time) matching (Section 5.1)

e Incorporate similarity /distance S(-, ) between fea-
tures or sequence elements into matching which
otherwise is typically limited to symbolic matching
(symbolic hamming distance)

e Refine matching of otherwise symbolically different
sequence elements/features (e.g., different amino-
acids in proteins, music samples, as shown in the
experiments in Section 6)

5.3 Relationship with the Hamming distance
and similarity scores S In the following we discuss
the relationship between the kernel Ki(E(X),E(Y))
(Eq. 5.11) computed over similarity-preserving em-
bedding and the original similarity kernel K(X,Y|S)
(Eq. 3.5) that uses S(, ).

The resulting kernel value Ky (E(X),E(Y)) is an
approximation of the total Hamming similarity between
all pairs («, ) of B x k submatrices

Do D has

a€E(X) BeE(Y)

(5.12) H(E(X)E(Y

where hqp is the Hamming similarity between the two
B xk submatrices « and 8 (the number of corresponding
identical bits). The kernel in Eq. 5.11 can be written as

(5.13)
EW(EX),EY)= > > ZI
a€E(X)BeE(Y) b=1
(5.14) =3 ) sas
aeX BEY



where s, is the number of identical rows in o and g,
and a[b] denotes bth row of a.

It is easy to see that we have the following rela-
tionship between s,g, the number of of identical rows
between o and 3, and h,g, the hamming similarity be-
tween a and (8

(5.15) max{hqs — (k —1)B,0} < sqp < m%ﬁ

Using the above relationship between s,g and hqg, we
observe that the kernel value in Eq. 5.11 is related to
the total Hamming similarity H(E(X), E(Y)), between
embeddings F(X) and E(Y) as
(5.16)

max{H(E(X),E(Y))~B,0}<K(E(X),E(Y))< TEXLEV)

where B = Yacr(X) 2pery)k —1)B (note that B
is bounded above by |X||Y|kB). By the similarity
preserving property of E, H(E(Y),E(Y)) ~ S(X,Y).
This together with the above bounds implies that the
kernel value in Eq. 5.11 can be used to efficiently
evaluate similarity kernel K (X,Y|S) in Eq. 3.5.

6 Evaluation

We study the performance of our algorithms, in terms
of predictive accuracy, on standard benchmark datasets
for protein sequence analysis and music genre classifica-
tion.

Datasets and experimental setup. We use four stan-
dard benchmark datasets to compare with previously
published results: the SCOP dataset (7329 sequences
with 2862 labeled) [22] for remote protein homology
detection, the Ding-Dubchak dataset [2] (27 folds, 694
sequences) [5, 16] for protein fold recognition, multi-
class remote fold recognition dataset [16], and music
genre data [1] (10 classes, 1000 sequences consisting
of 13-dim. MFCC feature vectors) [15] for multi-class
genre prediction. For protein sequence classification
under the semi-supervised setting, we also use the
Swiss-Prot dataset, a collection of about 100K protein
sequences, as an unlabeled dataset, following the setup
of [11]. For remote protein homology experiments, we
follow standard experimental setup used in previous
studies [22] and evaluate average classification perfor-
mance on 54 remote homology problems. For music
genre classification we use 5-fold cross-validation error
to evaluate classification performance. For multi-class
fold prediction, we use standard data splits as de-
scribed in [5, 16]. All experiments are performed on a
single 2.8GHz CPU. The datasets used in our experi-
ments and the supplementary data/code are available at

http://paul.rutgers.edu/ pkuksa/generalkernels/.

Evaluation measures. The methods are evaluated
using 0-1 and top-q balanced error rates as well as F1

scores and precision and recall rates. Under the top-¢
error cost function, a classification is considered cor-
rect if the rank of the correct label, obtained by sort-
ing all prediction confidences in non-increasing order,
is at most ¢g. On the other hand, under the balanced
error cost function, the penalty of mis-classifying one
sequence is inversely proportional to the number of se-
quences in the target class (i.e. mis-classifying a se-
quence from a class with a small number of examples
results in a higher penalty compared to that of mis-
classifying a sequence from a large, well represented
class). We evaluate reemote protein homology perfor-
mance using standard Receiver Operat- ing Character-
istic (ROC) and ROC50 scores. The ROC50 score is the
(normalized) area under the ROC curve computed for
up to 50 false positives. With a small number of posi-
tive test sequences and a large number of negative test
sequences, the ROC50 score is typically more indica-
tive of the prediction accuracy of a homology detection
method than the ROC score.

6.1 Empirical performance analysis In this sec-
tion we show predictive performance for several se-
quence analysis tasks using our similarity/distance-
preserving symbolic embedding string kernels (Sec. 5)
and abstraction-based string kernels (Sec. 4).

For protein sequences we use as feature vectors rows
of the BLOSUMG62 substitution matrices to represent 20
aminoacids (M step in Fig. 2, R=20). In case of the
music data, input sequences are sequences of 13-dim.
MFCC features (R=13). For symbolic Hamming em-
bedding we use B = 16,32, 64 and k-mers with k=5 (we
use method described in [21] to obtain binary Hamming
embeddings). For abstraction/clustering based kernel,
we cluster a set of MFCC into |X| = 2048 clusters; for
protein sequence data, 20-dim. BLOSUM score vectors
are clustered into |X| = 4 groups (this corresponds to
the number of typical groups of amino acids accord-
ing to their hydropathy). For the experiments on the
protein sequences, we report results for incorporating
BLOSUM similarity between aminoacids using abstrac-
tion/cluster kernel (results using binary embedding are
similar and not shown). For the music experiments,
we compare clustering approach to incorporating S and
similarity /distance-preserving Hamming approach that
preserves (approximate) distance according to S.

We consider the tasks of multi-class music genre
classification [15], with results in Table 1, and the
protein remote homology (superfamily) prediction [13,
8, 7] in Table 3. We also include results for multi-class
fold prediction [5, 16] in Table 4 and Table 5.

On the music classification task (Table 1), we
observe significant improvements in accuracy using



Table 1: Classification performance on music genre prediction (multi-class)

Method Error
Spectrum (Abstraction, |X| = 2048) 34.5
Mismatch-(k=5,m=2, |X| = 2048) (Abstraction) 32.6
Double-(k=1,d=5) (Abstraction) 31.1
Spectrum (Abstraction + Embedding, B=32) 26.1
Double(k=1,d=5) (Abstraction + Embedding) 25.9

Table 2: Music genre classification performance and running time of the kernel as a function of the embedding

size.

Running time (s),

Running time (s),

Embedding size Error % 1000 x 1000 kernel pairwise kernel
matrix computation computation K(X,Y)
B=16 28.3 24 0.05
B=32 26.1 61 0.12
B=64 28.2 202 0.28
(5,2) VQ |X]|=2048 32.6 28 0.015
(5,2) VQ |X]=1024 32.5 26 0.018
Explicit Euclidean S - - 220

the distance-preserving kernels. For instance, us-
ing distance-preserving embedding improves error from
34.5% using clustering (which does not retain actual dis-
tance) to 26.1%. Similarly, in the case of spatial kernel
(double-(1,5)), we observe reduction in error from 31.1%
to 25.9% when using the distance-preserving embed-
ding. The obtained error rate (25.9%) on this dataset
compares well with the state-of-the-art results based on
the same signal representation in [15]. Table 2 summa-
rizes the classification performance and running time for
the similarity-preserving and abstraction kernels with
varying values of the dimensionality of the embedding
space B and the number of clusters |C|. We note that
for mismatch-(k,m) kernel computation with use linear
time sufficient-statistic based algorithm from [10].

The remote protein homology detection, as evident
from Table 3, which incorporates biological distances
(BLOSUM scoring function) into kernel computation,
effectively improves over traditional string kernels. For
instance, we observe improvement in the average ROC-
50 score from 41.92 to 46.32 in the case of the mismatch
kernel. We also observe that using the semi-supervised
neighborhood kernel approach [22] with distance-based
kernel improves over standard mismatch kernel-based
cluster kernel. For example, for the neighborhood kernel
computed on the unlabeled subset ( 4000 sequences) of
the SCOP dataset, using abstraction/ clustering-based
kernel (BLOSUM) achieves the mean ROC50 70.14
compared to ROC50 67.91 using the standard mismatch
string kernel.

For multi-class protein fold recognition (Table 4),

we similarly observe improvements in performance for
clustering-based kernel over standard string kernels.
The top-5 balanced error of 28.92% for the clustering-
based mismatch neighborhood kernel using Swiss-Prot
compares well with the best error rate of 35.28% for the
state-of-the-art profile kernel [8, 16].

7 Conclusions

We presented new linear-time algorithms for inexact
matching of the discrete- and continuous- valued string
representations under general similarity metrics. The
proposed approach uses similarity/distance-preserving
embedding with string kernels to improve sequence
classification. On four benchmark datasets, including
music classification and biological sequence analysis
problems, our algorithms effectively improve over string
kernel baselines, while retaining efficient string kernel
running times.
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