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ABSTRACT

Establishing structural and functional relationship bedw sequences in the presence of only the
primary sequence information is a key task in biologicalusete analysis. This ability is critical
for tasks such as inferring the superfamily membership afunotated proteins (remote homology
detection) when no secondary or tertiary structure is atséel. Recent methods such as profile ker-
nels and mismatch neighborhood kernels have shown prognissults by leveraging unlabeled
data and explicit modeling mutations usingitational neighborhoadHowever, the size of such
neighborhood exhibit exponential dependency on the calitirof the alphabet set which incurs
expensive cost for kernel evaluation and hence hinderssaetisuch powerful tools. Moreover,
another missing component in previous studies for largdessemi-supervised protein homology
detection is a systematic and biologically motivated apphofor leveraging the unlabeled data
set.

In this study, we propose a systematic and biologically wadéid approach for extracting rele-
vant information from unlabeled sequence databases. Viepatgpose a method to remove the
bias caused by overly represented sequences which are adgnseen in the unlabeled sequence
databases. Combining these approaches with a class olképarse spatial sampling kernels,
SSSKthat effectively model mutation, insertion, and delefiae achieve fast and accurate semi-
supervised protein homology detection on three large whabdatabases. The resulting classi-
fiers based on our proposed methods significantly outpenpveviously published state-of-the-art
methods in performance accuracy and exhibit order-of-rtade differences in experimental run-
ning time.



1 Introduction

Protein homology detection is a fundamental problem in astamponal biology. With the advent
of large-scale sequencing techniques, experimentalddtion of an unknown protein sequence
function becomes an expensive and tedious task. Curréndge are more than 61 million DNA
sequences in GenBank][ and approximately 349,480 annotated and 5.3 million noteted
sequences in UNIPROT], making development of computational aids for sequenc®iation

a critical and timely task. In this work we focus on the praoblef predicting protein remote
homology using only the primary sequence information. Whitlditional sources of information,
such as the secondary or tertiary structure, may lessenutfiiv of establishing the homology,
they may often be unavailable or difficult to acquire for neutgtive proteins and even when
present, such information is only available on a very smialug of protein sequences and absent
on larger uncurated sequence databases.

Early approaches to computationally-aided homology detecfor example BLAST ] and
FASTA [20], rely on aligning the query sequence to a database of knegumences (pairwise align-
ment). Later methods, such as profilédnd profile hidden Markov models (profile HMMJ]
collect aggregate statistics from a group of sequences kriowelong to the same family. Such
generative approaches only make use of positive trainirgngkes, while the discriminative ap-
proaches attempt to capture the distinction between diffeclasses by considering both posi-
tive and negative examples. In many sequence analysis, thgksliscriminative methods such
as kernel-based2P] machine learning methods provide the most accurate gegyli2, 17, 21].
Several types of kernels for protein homology detectiorehiaaen proposed over the last decade.
In [11], Jaakkola et al. propos&VMFisheyderived from probabilistic models. Leslie et al. in/]
proposed a class of kernels that operate directly on stangsderive features from the sequence
content. Both classes of kernels demonstrated improvediimative power over methods that
operate under generative settings.

Remote homology detection problem is typically charazeatiby fewpositive trainingse-
guences accompanied by a large number of negative traimmg@es. Experimentally labeling
the sequences is costly leading to the need to levaraigdeled datdo refine the decision bound-
ary. The profile kernel13] and the mismatch neighborhood kern2g] both use unlabeled data
sets and show significant improvements over the sequenssif@as trained under the supervised
setting. We believe the major contributions for their greatcess come from first, leveraging
unlabeled data and second, the usenatational neighborhootb model amino acid substitution
process. However, kernel evaluation based on the inducedtional neighborhood incurs expo-
nential complexity in the size of the alphabet set hencedring the use of such powerful tools.

Another missing component in previous studies for largdessemi-supervised protein ho-
mology detection is a systematic and biologically motidapproach for leveraging the unlabeled
data set. In this study, we address both issues. First, wéograglass of previously established
kernels, the Sparse Spatial Sample Kernels (SS$H) This class of biologically motivated ker-
nels model mutation, insertion and deletion effectivelg amduce low-dimensional feature space;
moreover, the computational complexity of kernel evaluatbased on feature matching is in-
dependent of the size of the alphabet set and such key chiastics opens the door for rapid
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large-scale semi-supervised learning. Second, we progpdselogically meaningful way of ex-
tracting relevant information from the unlabeled datalfassemi-supervised learning. Third, we
also propose a method to remove the bias caused by overlgseamted or duplicated unlabeled
sequences which are commonly seen in uncurated sequeradzas@s. Our experimental results
show that the combination of these approaches yields stétee-art performance that are signif-
icantly better than previously published methods and akhibé& order-of-magnitude differences
in experimental running time.

2 Background

In this section, we briefly review previously published staf-the-art methods for protein ho-
mology detection. We denote the alphabet sef as the whole study. Given a sequence X the
spectrum-kernel [L6] and themismatch(k,mkernel [L7] induce the following/X|*-dimensional
representation for the sequence:

(X) = (ZHOW)) , (1)

aceX

where under the spectrutnkernel, I(a,y) = 1 if @ = ~ and under the mismatch(n) kernel,
I(a,y) = 1if a € N(v,m) and N(v,m) denotes the set df-mer mutational neighborhood
induced by thé:-mer~ for up tom mismatches or substitutions.

Both spectrumk and mismatch{,m) kernel directly extract string features based on the ob-
served sequence. Under the mismatch representationpalitiions are treated as equally likely,
which may not be deemed practical due to the physical and iclaéproperties of amino acids.
The profile kernel 1 2] takes such constraints into consideration: given a sezpi&rand its corre-
sponding profile §] Py, Kuang et al. 2, 13] define the|X|*-dimensional profilé(,c) represen-
tation of X' as:

prrofileko) (x) = > I(Px(i) <o) : (2)

i=1-+(Tp, —k+1) Jexk

whereo is a pre-defined threshold}», denotes the length of the profile afti (7, v) the cost of
locally aligning thek-mer ~ to the k-length segment starting at thié position of Pyx. Explicit
inclusion of the amino acid substitution process allowshlibe mismatch and profile kernels to
significantly outperform the spectrum kernel and demotetstate-of-the-art performance under
both supervised and semi-supervised settirgs [2]. However, such method of modeling sub-
stitution process inducesfamer mutational neighborhood that is exponential in the sizthe
alphabet set during the matching step for kernel evaluatarthe mismatch{,m) kernel, the size
of the induced:-mer neighborhood i5™|%|™ and for the profilek,o) kernel, the size of the neigh-
borhood is bounded below ly*|%|™, above by¥|*, and is dependent on the threshold parameter
o. Increasingn or o to incorporate more mismatches will incur higher comphekitr computing
the kernel matrix hence hindering the use of such powerfukto
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Finally, to construct the sequence profiles required for potation of the profile kernel, we
need to leverage the unlabeled sequences to avoid overfiftthe profile. For the mismatch string
kernel, Weston et al. propose to use #aguence neighborhood kerrnielleverage the unlabeled
sequences ir’[3].

2.1 The sequence neighborhood kernel

The sequence neighborhood kernels take advantage of thbealetl data using the process of
neighborhood induced regularization. L&t (X) be the original representation of sequence
Also, let N(X) denote thesequence neighborhoaaf X . Weston et al. proposed if] to
re-represeni’ using:

new _ 1 orig /
Prv(X) = 7|N(X)‘Xf§(x>® (X"). (3)

Under the new representation, the kernel value betweemiheeéquence&X andY” becomes:

K(X',Y)
K™YX,Y) = ’ : (4)
X,EN(X);,GN(Y) NN

Note that under such settings, &lining andtestingsequences will assume a new representa-
tion, whereas in a traditional semi-supervised settingpheled data are used during tinaining
phase only The authors choose the mismatch representation for theesegs and show that
the discriminative power of the classifiers improve siguifity once information regarding the
neighborhood of each sequence is available. However, thenextial size of the incurrekkmer
mutational neighborhood makes large-scale semi-suehlesarning under the mismatch repre-
sentation very computationally demanding and cannot biemeed using only moderate compu-
tational resources.

3 Proposed methods

In this section, we first discuss tlsparse spatial sample kerng]SSSK) for protein homology
detection. Such kernels effectively model the insertiagletion and substitution processes and
the complexity of the string matching step for kernel evahrais independent of the size of the
alphabet set. The kernels show very promising results utigesupervised setting and also un-
der the semi-supervised setting with a small unlabeledessrpidata setl[]. Next, we discuss

a systematic and biologically motivated way to extract amligvant information from the unla-
beled database. Finally we also discuss how to remove tlsechiased by duplicated or overly
represented sequences which are commonly found in largeratecd sequence databases. The
combination of the proposed methods enables fast and deaemi-supervised learning for pro-
tein homology detection.

'We will discuss how to defing/ (X) in later sections.
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3.1 The sparse spatial sample kernel

The class obparse spatial sample kerngfgoposed by Kuksa et al1}] have the following form:

K(X7Y|k7t7d) = Z C(alvdlva'?dev"'7dt—lvat|X)C(a'17d17a27d27'-'7dt—17at|Y)7 (5)

(a1,d1,...,d¢—1,at)
a; €3k 0<d;<d

whereC'(ay,dy, -+ ,a;-1,d;—1, ;| X) denotes the number of times we observe substmﬁngfg
di—
as, <d—2>, .., <= a, (a1 separated by, characters from,, a, separated by, characters fronas,

etc.) in the sequencE. This is illustrated in Figurd. The kernel implements the idea of sampling
the sequences at different resolutions and comparing thatireg spectra; similar sequences will
have similar spectrum at one or more resolutions. This takesaccount possible mutations as
well as insertions and deletions. Each sample consistspétially-constrained probes of sizg
each of which lie less thafpositions away from its neighboring probes. The parametamtrols
the individual probe size] controls the locality of the sample andontrols the cardinality of the
sampling neighborhood. In this work, we use short sampleszefl (i.e. k = 1) and set to 2 (i.e.
features are pairs of monomers)(i.e. features are triples of monomers). The spatial sample
kernels, unlike the family of spectrum kernels5[ 17], not only take into account the feature
counts, but also include spatial configuration informatiom how the features are positioned in
the sequences. The spatial information can be criticaltabdishing similarity of sequences under
complex transformations such as the evolutionary prosasserotein sequences. The addition of
the spatial information experimentally demonstrates wgrgd performance, even with very short
sequence featuresd. k = 1), as we will show in sectioA.

X[ ] [AIRINID[cIQ] T [ T [ [ | ]

o

k

X[ [ [aIR] | | InIp] | [ela] [ |

a, d1 a, <—d2% a,

Figure 1: Contiguous k-mer featureof a traditional spectrum/mismatch kernel (top) contrdste
with the sparse spatial samples of the proposed kernebfidit

The use of short features can also lead to significantly lmeerputational complexity of the
kernel evaluations. The dimensionality of the featuresugedl by the spatial sample kernels is
||t~ for the choice oft = 1. As a result, for triple(,3) (k = 1,t = 3, d = 3) and double-
(1,5) (k = 1,t = 2, d = 5) feature sets, the dimensionalities & 000 and2, 000, respectively,
compared ta, 200, 000 for the spectrunk) [16], mismatchg,m) [17] and profilek,o) [17] kernels
with the common choice ok = 5. In Figure2 we show the differences between the spatial
(double(,5)) and the spectrum (mismatéhl)) features on two slightly diverged sequencesnd
S’. In the mismatch features, each symbol "X’ represent artrartyi symbol in the alphabet set,
¥.. As a result, each feature basis correspond&tdeatures. Such way of modeling substitution
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induces ak-mer mutational neighborhood i@ (k™ |%|™) size. In contrast, the spatial features
sample the sequences at different resolutions and therpfnforming string matching does not
require neighborhood expansion; matching on a positioh substitution is achieved by extending
the current spectrum. Such way of modeling substitutiomefke door for a matching algorithm
with low complexityi.e. independent of the size of the alphabet, which in turns ogemdoor for
fast large-scale semi-supervised learning, as we will s&geictiord. In the figure, we represent
all common features between the original and the mutaté@uaystrvith bold fonts and red (light)
color.

S = HKYNQLIM S'=HK | NQ IM
XKYNQ XYNQL XKINQ[ XINQI
HXYNQKXNQL HXINQ| KXNQI
HIKXNG KYXQL HIKXNG| KIXQI
, HKYXQKYNXL HKIXQ)| KINXI
mismatch pcy NX YKNQX HKINQ| KINQX
(5.1) [ XNOLI|XOLIM XNQI [ XQIIM
YXQLI| NXLIM IXQIl | NXIIM
YNXLI | NOXI INXIL | NOXI
YNQXI| NQLXM INQXI | NQIXM
YNQLX NQLIX INQIX | NQIIX
KA Y[H _NH _ QH___L|[AK[HI]H _NH _ gH__1
KY | K N[K O K LK Ik [KONK kK
YN[Y QY L|Y 1|{Y__MUN[LQ|LI|1I_1]I_M™
double-\ \o [N LIN TN M NOINT|N I[N M
(15 loL|{ai|a Q|Ql|Q
Ll |L_M TR,
| M | M

Figure 2: Differences in handling substitutions by the masth and spatial features. We represent
all common features between the original and the mutatedystS andS’, with bold fonts and red
(light) color. Each symbol "X’ under the mismatch represgitn represent an arbitrary symbol in
the alphabet sef. As a result, each feature basis correspond&deatures.

To compute the kernel values under the supervised settiedjrat extract the features and
sort the extracted features in linear time using counting. sbinally we count the number of
distinct features and for each observed feature, we uptiat&drnel matrix. ForV sequences
with the longest length andw distinct features, computing thé-by-N kernel matrix takes linear
O(dnN + min(u,dn)N?) time.

Under the semi-supervised setting, on the one hand, diseabilequatiod for computation of
the refined kernel values between sequed€esidY requireg N (X )| x |N(Y)| kernel evaluations
(i.e. quadratic running time in the size of the sequence neigldmoat)) on the other hand, use of
Equation3 requires explicit representation of the sequences whichbeaproblematic when the
dimensionality of the feature space is high. As a resultfgoering suchsmoothingoperation
over the mismatch(1) representation is computationally intensive for both moels due to first,
the exponential length of the inducéemer mutational neighborhood and second, the quadratic



running time induced by equaticgh

Equation3 lends a useful insight into the complexity of the smoothipgmation. For any
explicit representatio (X ), its smoothed version can be computed in time linear in the of
the neighborhoodV (X)), therefore the smoothed kernel can also be evaluated inlimear in
the neighborhood size. As mentioned before, the smooth@@sentation under the mismatch
features cannot be efficiently computed because of the exyiah size of the induced&-mer
neighborhood; however, for the double and triple featuts #ge smoothed representations can
be computed explicitly, if desired. In our experiments, veenibt compute the explicit represen-
tation and instead use implicit computations over induegulesentations: for each neighborhood
set N(X), we first sort the features and then obtain counts for disfieatures to evaluate the
kernel. The low-dimensional feature space and efficiertufeamatching induced by the kernels
ensure low complexity for kernel evaluation. Kuksa et ahviles a more detailed description of
algorithm for spatial kernel evaluation under both supsediand semi-supervised settingsiti][

3.2 Extracting relevant information from the unlabeled sequence database

Remote homology detection problem is typically charazgatibyfew positive sequencescom-
panied by a large number okgative examplesExperimentally labeling the sequences is costly,
leading to the need to leveragalabeled datéao refine the decision boundary. 163, Weston

et al. leverage the unlabeled sequences to constreefjaence neighborhood kerneider the
mismatch representation to refine the decision boundaryveder, in most sequence databases,
we have multi-domain protein sequences in abundance asgddhch multi-domain sequences can
be similar to several unrelated single-domain sequenceotsl in P3]. Direct use of such long
sequences may falsely establish similarities among ueklsequences. Under semi-supervised
learning setting, our goal is to recruieighbors or homologue®f training and testing sequences
and use these intermediate neighbors to establish sityitsiween the remotely homologous pro-
teins, which bear little to no similarity on the primary segee level. As a result, the quality of
the intermediate neighboring sequences is crucial forimfg labels of remote homologues. Se-
guences that are too long will contribute excessive featwrlile sequences that are too short often
have missing features and hence induce very sparse repgsanwhich in turn bias the averaged
neighborhood representation. As a result, the performahtee classifiers will be compromised
with direct use of these sequences. Weston et al2#h proposed to only capture neighboring
sequences with maximal length 230 as a remedy. However, such practice may not offer a direct
and meaningful biological interpretation and may discaathiable information. In this study, we
propose to extract onlgtatistically significant sequence regiomeported by PSI-BLAST, from
the unlabeled neighboring sequences. We summarize alletimgpmethods in below:

e unfiltered all neighboring sequences are recruited. This is to show Imach excessive
or missing features in neighboring sequences that are tapdo too short compromise the
performance of the classifiers.

e extracting the most significant reginfor each recruited neighboring sequence, we extract
only the moststatistically significant sequence regioeported by PSI-BLAST; such sub-
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sequence is more likely to be biologically relevant to thergusequence.

o filter out sequences that are too long or too shdadr each query sequence, we remove
any neighboring sequenc#sif 7y > 27Ty or Ty < TTX whereT is the length of sequence
X. This method will alleviate the effect of the excessive ansksing features induced by the
unfiltered method.

e maximal length of 250this is the method proposed by Weston et al. in their study.

To recruit neighbors of a sequenge we query the unlabeled database using PSI-BLAST |
with two iterations. We recruit all sequences with e-vallgss than or equal t0.05 as the neigh-
boring sequences of . To obtain only relevant information from a neighboring seqce, we ex-
tract from the unlabeled neighboring sequence the mosifisignt region (lowest e-value) reported
by PSI-BLAST. We illustrate the procedure in Figueln the figure, given the query sequence,
PSI-BLAST reports sequences (hits) containing substtimgisexhibit statistically significant sim-
ilarity with the query sequence. For each reported hit witrakie less than or equal 05, we
extract the most significant region and recruit the exticstgb-sequence to the neighboring set of
the query sequence.

unlabeled

query sequence database

sequence PSI-BLAST

M
Ul

significant hit ]

statistically significant region

Figure 3: Extracting only statistically significant reg&(red/light color, bold line) from the sig-
nificant hit reported by PSI-BLAST

3.3 Clustering the neighboring sets

The smoothing operation in Equati@ns susceptible to overly represented neighbors in the unla-
beled data set since if we we append many replicated copeeseifjhbor to the set, the computed
average will be biased towards such sequence. In large ateclisequence databases, duplicated
sequences are common. For example, some sequences infBuii$gve the so-callesecondary
accession number$uch sequences can be easily identified and removed. Howese are two
other types of duplication that are harder to find: sequetie@sare nearly identical and sequences
that contain substrings that have high sequence similantyare significant hits to the query se-
guence. Existence of such examples will bias the estimatieeoveraged representation, hence
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compromising the performance of the classifiers. Pre-msiog the data is necessary to remove
such bias. In this study we propose to cluster the neighbasits as a remedy. Conducting cluster-
ing analysis typically incurs quadratic complexity in thenmber of sequences to be clustered. As
a result, though clustering the union of all neighbor setaase desirable, to minimize the experi-
mental running time we propose to cluster each reportechbeigsetone at a timefor example,
the union of all neighbor sets (e-value less than or equal(®) induced by the NR unlabeled
database i$29, 646, while the average size of the neighbor setslis (reported in later sections).
Clustering each reported neighbor set individually wildeto tremendous saving in experimental
running time.

We use the progran@DHit [18] for clustering analysis. The program employs a heuristic
(incremental clustering algorithm) to avoid all-by-allmparisons. First, the sequences are sorted
in decreasing length with the longest one representingltistaring center. Next, each remaining
sequences is compared to each existing clustering cerdewdirbe assigned to the first cluster
in which the similarity between the cluster representasind the query sequence exceeds a pre-
defined threshold. If no such cluster exists, the sequenitéown a new cluster. In this study we
perform clustering at0% sequence identity level.

4 Experiments

We present experimental results for protein remote hompottagection under the semi-supervised
setting on the SCOP 1.599] data set, published ir?[]. The data set contairigl target families
with 7,329 isolated domains. Onlg, 862 domains out of7, 329 are labeled, which allows to
perform experiments in both supervised (labeled sequencly3 and semi-supervised (labeled
and unlabeled sequences) settings. Different instanctgsoflata set have been used as a gold
standard for protein remote homology detection in varidudiss.

In [15], Kuksa et al. show that the class of spatial sample kerngigege the state-of-the-
art performance under the supervised setting and semirgspd setting, where in the semi-
supervised setting, the unlabeled data set comes from tB#I59 [L9) sequence database itself.
Note that sequences in the SCOP database are representeglérmde®mains and therefore, use of
such unlabeled data set does not raise any concern ovectaxgraelevant information from a
multi-domain sequence. In this study, we use three largi&baehed sequence databases, some
of which contains abundant multi-domain protein sequenasasell as duplicated or overly repre-
sented sequences. The three databases are?DO@16,697 sequences), Swiss-Prj£[(101,602
sequences), and timen-redundan{NR) sequence database (534,936 sequences). To adhege to th
true semi-supervised settingl) sequences in the unlabeled data sets that are identicahi test
sequences are removed

We evaluate all methods using tReceiver Operating CharacterisfOC) and ROC501[0]
scores. The ROC50 score is the (normalized) area under tl@@ ¢k@se computed for up td0
false positives. With a small number of positive testingusetges and a large number of negative

2as of Dec. 2007
3We use the same version as the one useddhfpr comparative analysis of performance
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double(,5) triple(1,3)
#neighbors ROC ROC50 p-value ROC ROC50 p-value
PDB
unfiltered  14/5/311 9333 .7324  .3498 9393 .7444  3.46e-04
region 11/5/311 9533 .7352 - .9666 .8074 @ -

no tails 11/3/286 9255 .6926  .0197 9433 7456  3.50e-03
by length  11/2/300 9254 .6848  6.02e-02 .9418 .7127  4.53e-0

Swiss-Prot
unfiltered 56/28/385 .9145 .6360 6.55e-04 .9245 .6908 204lbe
region 56/28/385 .9593 .7635 9752 .8556 -

no tails 27/4/385 9160 .6318 2.12e-04 .9361 .6938  1.55e-06
by length  21/3/385 9070 .5652  2.03e-05 .9300 .6514  7.33e-0

NR
unfiltered  115/86/490 .9319 .6758  1.40e-03 .9419 .7328 e1(®/
region 115/86/490 .9715 .7932 - 9824 .8861 -

no tails 55/13/399 .9463 .6775  4.40e-03 .9575 .7438 9.47e-0
by length  38/10/426 .9275 .6656  7.32e-04 .9513 .7401  2066e-
“p-value: signed-rank test on ROC50 scores against region

#neighbors: mean/median/max

Table 1: The overall prediction performance of all comparegthods over various unlabeled data
sets.

testing sequences, the ROC50 score is typically more itidecaf the prediction accuracy of a
homology detection method than the ROC score.
In all experiments, all kernel valuds (X, Y') are normalized using

K(X,Y)
VEX, X)K(Y,Y)

K'(X,Y) (6)

to remove the dependency between the kernel value and tbhersagjlength. We use the sequence
neighborhood kernel in Equatiof) as in 3], under the spatial sample representation. To per-
form our experiments, we use an existing SVM implementdftiom a standard machine learning
package SPIDERwith default parameters.

4.1 Experimental resultswithout clustering

In Tablel, we show the performance in ROC and ROC50 scores for the fmapeting methods
on the doublel,5) and triple(,3) feature sets using different unlabeled sequence data sets. We
denote the method of filtering out sequences that exhibitcafthd difference in length with the
guery sequence a® tailsand the method of filtering out sequences whose length igegrdean

“http://iwww.kyb.tuebingen.mpg.de/bs/people/spider
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250 asby length In all but one case, extracting only relevant regions fromunlabeled sequence
leads to significant improvementin the ROC and ROC50 scar@pared to the unfiltered method.
In the second column, we note the number of recruited neighfoean, median, and max). We
also calculate the p-values of each competing metgathst the regionmethod using Wilcoxon
signed-rank test. In all cases except one, we observetgtallis significant improvement in clas-
sification performance. Extracting significant regions fieighborhood smoothing improves the
ROC and ROC50 scores on average(ys373 and0.1048, respectively, when compared to the
unfilteredmethod. We show the ROC50 plots of the four competing metheugy the triple(,3)
feature set in Figurd. In the figures, the horizontal axis corresponds to an RO@50esand
the vertical axis denotes the number of experiments, oattpWith the corresponding or higher
ROCH50 score. In all cases, we observe that the ROC50 curvesdimn extraction show strong
dominance over all other competing methods. Based on the dall figures, we also observe that
filtering out neighboring sequences based on the lengtradegrthe performance of the classifiers
on the PDB (Figuret(a) and Swiss-Prot (Figuré(b)) unlabeled sequence databases while in the
case of using the NR data set (Figur&)), the classifier shows slight improvement. Although
filtering out sequences based on the length removes the essery and noisy features from irrel-
evant regions within the sequences, at the same time, lamdgneled sequences that carry critical
information for inferring the class labels of the test setpes are also discarded. In a larger un-
labeled data set (NR), such problem is alleviated sincetadgtabases are more likely to contain
short sequences carrying such critical information.

Number of families
Number of families

Number of families

\ L 3 L
—unfiltered \ —unfiltered “\ —unfiltered \“

) D‘AROQ;EDSOO‘5 v ’ °e o n‘AROG‘CSISOD‘6 e e D‘AROQ;EDSOO‘5 v
(a) PDB (b) Swiss-Prot (c) NR
Figure 4: The ROC50 plots of four competing methods usingttipde-(1,3) feature set with
PDB, Swiss-Prot and NR databases as unlabeled data setsctiesly. The ROC50 curves of

the method that only extracts relevant regions from theht@gng sequences consistently show
strong dominance over all competing methods.

4.2 Experimental resultswith clustering

In Table2, we present the performance in ROC and ROC50 scores for tinedonpeting methods
on the doublel,5) and triple( ,3) feature sets using different unlabeled data sets. All smoothed
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double(,5) triple(1,3)
#neighbors ROC ROC50 p-value ROC ROC50 p-value
PDB
unfiltered  11/4/116 9369 .7142  6.74e-02 .9439 .7585  408)e-
region 11/4/120 9599 .7466 9717 .8240 -

no tails 9/3/102 9291 .6902  4.8e-03 .9490 .7545  2.30e-03
by length  7/2/104 9229 .6589  1.10e-03 .9490 .7211  2.66e-05

Swiss-Prot
unfiltered  30/17/223 .9526 .6397  3.76e-04 .9464 .7474  100e
region 27/15/210 .9582 .7701 9732 .8605 -

no tails 15/3/192 9214 6446  1.95e-04 .9395 .7160  2.30e-06
by length  10/2/107 9100 .5841 1.21e-05 .9348 .6817  7.33e-0

NR
unfiltered  77/55/344 .9403 .6874  5.62e-04 .9556 .7566  20B0e
region 67/47/339 9734 .8048 - 9861 .8944 -

no tails 37/10/310 .9452 .6815 2.90e-04 .9602 .7486  2.06e-0
by length  24/8/263 9313 .6686  1.00e-03 .9528 .7595  2.56e-0
“p-value: signed-rank test on ROC50 scores against region

#neighbors: mean/median/max

Table 2: The overall prediction performance of all comparegthods over various unlabeled data
setswith clustering the neighbor sets. All neighbor sets are clustered on a 704esee identity
level and representatives of each cluster are chosen todogduced neighbor set.

representations are induced by the reduced neighbor satentrast to Tablé, extracting relevant
regions from neighboring sequences and performing clugtem the neighbor sets significantly
improve performance oall unlabeled data sets. With clustering, extracting regiongroves
the ROC and ROC50 scores on averagedl45 and0.0994, respectively, when compared to
theunfilteredmethod. We again observe performance degradation wherinigteut neighboring
sequences based on their lengths. In the second column ometise number of neighbors (mean,
median, and maximum) after clustering. In most cases, wergbsa2-3 fold reduction in the
number of neighbors contrasting to the neighborhood sigerted in Tablel. We note that the
reduction in the neighborhood size is critical for fastairiing and classification.

Finally we show the experimental running time in TaBlender various settings, performed on
a3.6GHz CPU, based on the 862 labeled sequences in the SCOP 1.59 data set. The average re-
duction in running time for kernel evaluationi8.32% for the double(,5) kernel andl0.66% for
the triple(l,3) kernel. Clustering takes very little CPU time; for exampikistering the neighbor
sets induced by the NR sequence database dh &P labeled sequences tak&6.24 seconds
in total on the region-based method. We want to note the l&iglechange in running time by
adding one spatial samplée-£ 3 for triple in contrast ta¢ = 2 in double). Increasing the number
of spatial samples by implies multiplying the complexity for string matching laly the maximum
number of distance allowed between two samples. After etusd, the reduction in experimental



- 12 —

double(,5) triple(1,3)

without clustering with clustering without clustering Wwiclustering
PDB
unfiltered 10.70 10.19 170.45 161.01
region 10.22 9.98 99.57 95.05
no tails 10.17 9.94 103.39 104.49
by length 9.97 9.85 73.85 73.36
Swiss-Prot
unfiltered 16.14 12.84 802.27 719.62
region 12.74 11.17 289.03 240.15
no tails 11.61 10.52 186.06 160.84
by length 10.64 10.01 107.62 94.28
NR
unfiltered 23.26 18.60 1451.52 1345.89
region 15.69 13.54 630.95 531.07
no tails 13.69 12.32 383.80 348.52
by length 11.66 10.74 245.23 213.02

Table 3: The experimental running time (seconds) for caigsitng the £862-by-2862) kernel ma-
trices on each unlabeled data set under different settiige. experiments are performed on a
3.6GHz CPU.

running time will be significant for other tasks that requmnere spatial samples (increasing
larger distance between each spatial samples (incredsit@rger sequence database (increasing
N) or longer sequences (increasiny since the complexity for feature matching exhibit multi-
plicative dependency on these parameters ; performingreatatching incur® (d*~' H Nn) and
O(k™t %™ HnN) complexity for spatial and mismatoh(n) kernels, respectively, wheig de-
notes the size of the sequence neighborhood. Performistecing reduces the neighborhood size
by two fold on average, which in turn implies less computagiaesources for storage: under the
discriminative kernel learning setting, we need to savesthport vectors along with their corre-
sponding neighbor sets. The savings in experimental rgntime for kernel evaluation will be
even more pronounced if the previously described parameaterincreased simultaneously. For a
detailed analysis of computational complexity, pleaserred [14].

4.3 Comparison with other state-of-the-art methods

We compare the performance of our proposed method with guely published state-of-the-art
methods over various unlabeled sequence databases aadtghresoverall prediction performance
of all compared methods in Tabfe For spatial kernels, all reported scores are based onogxtra
ing the most significant region and performing clusteringtio& neighbor sets. We perform all
experiments on 8.6G H z machine with2GB of memory. Computation of the mismatch neigh-
borhood kernels is computationally demanding and typjaadinnot be accomplished on a single
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PDB ROC ROC50
double-(,5) neighborhood 9599 .7466
triple-(1,3) neighborhood 9717 .8240
profile(5,7.5) 9511 .7205
Swiss-Prot

double-(,5) neighborhood 9582 .7701
triple-(1,3) neighborhood 9732 .8605
profile(5,7.5) 9709 .7914
mismatch nbhd 955 .810
NR

double-(,5) neighborhood 9720 .8076
triple-(1,3) neighborhood 9861 .8944
profile(5,7.5)-2 iterations .9734 8151
profile(5,7.5)-5 iteration$ 984 874

profile(5,7.5)-5 iter. with secondary structure .989  .883
T:directly quoted from 23 ;*:directly quoted from 3]

Table 4: The overall prediction performance of all comparegthods over various unlabeled data
sets. For spatial kernels, all reported scores are basext@ting the most significant region and
performing clustering on the neighbor sets.

machine for anything but relatively small unlabeled dats.s&herefore, the results for the mis-
match neighborhood kernel can only be shown using the puslygoublished summary statis-
tics [23] on Swiss-prot, a moderately populated sequence database2ach unlabeled data set,
we highlight the best ROC and ROC50 scores; on all unlabedéal skts, the triplé(3) neighbor-
hood kernel achieves the best performance. Furthermorachieve such performance by oraly
PSI-BLAST iterations. For example, the triplef) neighborhood kernel with PSI-BLAST itera-
tions outperforms the profilg(7.5) kernel with5 PSI-BLAST iterations. Moreover, the triplg)
neighborhood kernel with PSI-BLAST iterations on the PDB unlabeled data set alreadyey-
forms the profileg,7.5) kernel with2 PSI-BLAST iterations on the NR unlabeled data set. We
also note that the performance of our kernels is achievegyysimary sequence information only.
However, as shown in the table, the triglg) kernel still outperforms the profil&(7.5) kernel with
added secondary structure information. Such higher ordermation €.g. secondary structure),
if available and desirable, can be easily included in theufesset. In this study, we do not pursue
such direction.

We also show the statistical significance of the observddréifices between pairs of methods
on various unlabeled data sets in Table All the entries in the table are the p-values of the
Wilcoxon signed-rank test using the ROC50 scores. For eatdbaled data set, we highlight the
method that has the best overall performance. The thiiekernel consistently outperform all
other kernels, with high statistical significance.

Next, in the upper panel of Figure we show the ROC50 plots of the douhlg) neigh-
borhood, triple(,3) neighborhood and profilg(7.5) kernels using PDB (first column), Swiss-Prot
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SCOP 1.59
mismatch profile double triple
mismatch - 2.245e-03 1.804e-02 3.570e-06
profile 2.245e-03 - 2.874e-01 9.615e-09
double 1.804e-02 2.874e-01 - 6.712e-06
triple 3.570e-06 9.615e-09 6.712e-06 -
PDB
double triple profile
double - 1.017e-01 4.762e-02
triple 1.017e-01 - 7.666e-06
profile 4.762e-02 7.666e-06 -
Swiss-Prot
double triple profile
double - 9.242e-05 4.992e-01
triple 9.242e-05 - 2.419e-04
profile 4.992e-01 2.419e-04 -
NR
double triple profile
double - 8.782e-06 9.762e-01
triple 8.782e-06 - 7.017e-06

profile 9.762e-01 7.017e-06 -

Table 5: Statistical significance (p-values of the Wilcoxigned-rank test) of the observed dif-
ferences between pairs of methods (ROC50 scores) on uathblelta sets. Triple denotes the
triple-(1,3) neighborhood kernel, double denotes the doubj&}feighborhood kernel, mismatch
denotes the mismatch() neighborhood kernel, and profile denotes the prdfjief) kernel.

(second column) and NR (third column) sequence databasles aslabeled data sets. The ROC50
curves of the triplel,3) neighborhood kernel on all unlabeled data sets conslgtehbw strong
dominance over those of other two kernels. Furthermoregyénrmance of the doublgf) neigh-
borhood kernel is on par with that of the profilg(.5) kernel. In the lower panel, we show the
scatter plots of the ROC50 scores of the trip/g) kernel and the profilé(7.5) kernel. Any point
falling above the diagonal line in the figures indicatesdrgperformance of the triplé(3) kernel
over the profile},7.5) kernel. As can be seen from these plots, the triple kernglestorms the
profile kernel on all three data sets (43/37/34 wins and &/6&k, out of4 experiments, on PDB,
Swiss-Prot, and NR data sets, respectively).

Finally, in Table6, we show the experimental running time for constructingkémnel matrix,
based on all available sequences in the SAQGP data set. The size of the kernel matrix is
7329-by-7329. For the semi-supervised setting (neighborhood kernelsyeport average running
time on the data sets useide( PDB, Swiss-Prot, and non-redundant (NR) sequence datgbase
As mentioned in previous sections, both mismatch and prikéitaels require higher complexity
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Figure 5: In the upper panel, we show the ROC50 plots of thitferent features using PDB,
Swiss-Prot and NR databases as unlabeled data sets, resigetrt the lower panel, we show the
scatter-plot of ROC50 scores of the tripled) kernel (vertical) and the profil&(7.5) kernel (hor-
izontal). Any point above the diagonal line in the figufés$,(e),(f) indicates better performance
for the triple-(1,3) kernel.

to perform feature matching due to the exponential size ®htlutational neighborhood, which in
turns depend on the size of the alphabet set, whereas thdeatypf performing feature matching
for the spatial features is independent of the alphabetizet his complexity difference leads
to order-of-magnitude improvements in the running timeshef spatial sample kernels over the
mismatch and profile kernels. The difference is even moraquaced when kernel smoothing is
used under a semi-supervised setting. The neighborhoadatsh kernel becomes substantially
more expensive to compute for large unlabeled data setsletad in [L3, 23] by the authors.

5 Discussion

We first illustrate the benefit of extracting only statistigaignificant regions from the neighboring
sequences from a machine learning perspective and thenseesdi the biological motivation of
the spatial feature sets. The spatial features allow akthfabe matching and model substitution,
insertion and deletion effectively. The combination oftbotethods leads to fast and accurate
semi-supervised protein remote homology detection.
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Method Running time (s)
supervised methods

Triple(1,3) kernel 112

Double(l,5) kernel 54

Mismatch,1) kernel 948
semi-supervised methods

Triple(1,3) neighborhood kernel 327

Double(l,5) neighborhood kernel 67
Mismatch{,1) neighborhood kernel -
Profile,7.5) kernel 10 hours
T: the running time reported in.fj

Table 6: Experimental running time of all methods based é¢rseguences in the SCOP59
data set. The size of the kernel7829-by-7329. For triple and double kernels, under the semi-
supervised setting, the reported running time are basedtoacting relevant regions and perform-
ing clustering on neighboring sets.

5.1 Moaotivation for extracting relevant regions

To illustrate the benefit of extracting only statisticaligrsificant regions from an unlabeled se-
guence, consider the example in Figuie In the figure, colors indicate membership: yellow
(shaded) corresponds to the positive class and green rfpati@responds to the negative class.
Sequences that demonstrate statistically significantaiityi are more likely to be evolutionarily
related and therefore to belong to the same superfamily. goia is to infer membership of the
test (unshaded) sequences via the unlabeled sequence (imddle). In the figure, arcs indicate
(possibly weak) similarity induced by shared features afed by the black boxes, and absence of
arcs indicates no similarity. As can be seen from the figiwe pbsitive training and test sequences
share no features and therefore have no similarity; howeherunlabeled sequence shares some
features with both sequences in the reported region, whechexy likely to be biologically relevant
to both positive training and test sequences and thereftablkshes the similarity between them.
On the other hand, if the whole unlabeled sequence is recrais a neighbor without discarding
irrelevant regions, the similarity between the positiarimg and negative testing sequences will
be incorrectly established, hence compromising the perdoice of the classifiers.

5.2 Biological Motivation of the spatial feature sets

Compared to mismatch/profile kernels, the feature setsciedlby our kernels cover segments of
variable length €.g. 2-6 and3-7 residues in the case of the douhilg] kernel and the tripld(3)

kernels, respectively), whereas the mismatch and profileete cover segments of fixed length
(e.g.5 or 6 residues long) as illustrated in Figute Sampling at different resolutions also allows
to capture similarity in the presence of more complex ststin, insertion and deletion processes,
while sampling at a fixed resolution, the approach used imraish and spectrum kernels, limits
the sensitivity in the case of multiple insertions/delefi@r substitutions. We illustrate the benefit
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+ training
unlabeled sequence
?
+ test - test

Figure 6: The importance of only extracting relevant regimmm neighboring sequences (in the

middle): in the figure, the colors indicate the membershgitoyv (shaded) indicates membership
of the positive class and green (pattern) indicates merhlpeos the negative class. The goal is to
infer the label of the test (unshaded) sequences via thaniethate neighboring sequences. The
arcs in the figure indicate (possibly weak) similarity andetice of arcs indicates no similarity.

The black boxes in the sequence correspond to the shareddeat

of multi-resolution sampling in Figuré. In the figure, we show six slightly diverged sequences
with the presence of both mutation and insertion. We alswghe double(,5) and mismatch,1)
kernel matrices. We observe that the spatial kernel stitwas substantial amount of similarities
whereas the mismatch kernel, which performs fixed-resmhigampling captures little similarities
among the related sequences. Both images are shown on teessal®s. Increasing the parameter
m (number of mismatches allowed) to accommodate multiplestsitions, in the case of mis-
match kernels, leads to an exponential growth in the sizéekimer mutational neighborhood,
and results in high computational complexity. On the otlard) increasing the threshaldn the
profile kernel also incurs an exponential growth in the sizemuotational neighborhood since in a
highly diverged region the profile may be flat.

6 Conclusion

In this study, we propose a systematic and biologically wadéid approach for extracting relevant
information from unlabeled sequence database under thessgrarvised learning setting. We also
propose to perform clustering on each neighbor sets to rentto bias caused by duplicated or
overly represented neighboring sequences which are comyrfoamnd in large uncurated sequence
databases. Combing these approaches with the sparsd spatjde kernels we achieve fast and
accurate semi-supervised protein homology detectionm@etlarge unlabeled sequence databases.
The spatial kernels induce low-dimensional feature speffectively model mutation, insertion,
and deletion with multi-resolution sampling and incur loangputational complexity for kernel
evaluation; its running time on string matching is indepamtcf the size of the alphabet set, mak-
ing rapid kernel evaluation possible on large sequencébdaes. The resulting classifiers based
on our proposed methods significantly outperform previppsiblished state-of-the-art methods
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complex biological transformation:
mutation + deletion

S1: SVLLVKMS
S2: SVYFVKMS
S3: SVL-VKMS
S4: SVY-VKMS
S5: SVV--KMS
S6: SVV--RMS

multiple alignment

)

double(1,5) kernel  mismatch(5,1) kernel

Figure 7: The benefit of multi-resolution sampling: in thegence of both mutations and inser-
tions, the spatial kernel still captures substantial amadisimilarities in such moderately con-
served region; on the other hand, the mismatch kernel, whecforms fixed-resolution sampling
captures little similarity among related sequences.

in performance accuracy and exhibit order-of-magnitudfeinces in experimental running time.
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