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ABSTRACT

Establishing structural and functional relationship between sequences in the presence of only the
primary sequence information is a key task in biological sequence analysis. This ability is critical
for tasks such as inferring the superfamily membership of unannotated proteins (remote homology
detection) when no secondary or tertiary structure is available. Recent methods such as profile ker-
nels and mismatch neighborhood kernels have shown promising results by leveraging unlabeled
data and explicit modeling mutations usingmutational neighborhood. However, the size of such
neighborhood exhibit exponential dependency on the cardinality of the alphabet set which incurs
expensive cost for kernel evaluation and hence hinders the use of such powerful tools. Moreover,
another missing component in previous studies for large-scale semi-supervised protein homology
detection is a systematic and biologically motivated approach for leveraging the unlabeled data
set.
In this study, we propose a systematic and biologically motivated approach for extracting rele-
vant information from unlabeled sequence databases. We also propose a method to remove the
bias caused by overly represented sequences which are commonly seen in the unlabeled sequence
databases. Combining these approaches with a class of kernels (sparse spatial sampling kernels,
SSSK) that effectively model mutation, insertion, and deletion, we achieve fast and accurate semi-
supervised protein homology detection on three large unlabeled databases. The resulting classi-
fiers based on our proposed methods significantly outperformpreviously published state-of-the-art
methods in performance accuracy and exhibit order-of-magnitude differences in experimental run-
ning time.



1 Introduction

Protein homology detection is a fundamental problem in computational biology. With the advent
of large-scale sequencing techniques, experimental elucidation of an unknown protein sequence
function becomes an expensive and tedious task. Currently,there are more than 61 million DNA
sequences in GenBank [4], and approximately 349,480 annotated and 5.3 million unannotated
sequences in UNIPROT [3], making development of computational aids for sequence annotation
a critical and timely task. In this work we focus on the problem of predicting protein remote
homology using only the primary sequence information. While additional sources of information,
such as the secondary or tertiary structure, may lessen the burden of establishing the homology,
they may often be unavailable or difficult to acquire for new putative proteins and even when
present, such information is only available on a very small group of protein sequences and absent
on larger uncurated sequence databases.

Early approaches to computationally-aided homology detection, for example BLAST [2] and
FASTA [20], rely on aligning the query sequence to a database of known sequences (pairwise align-
ment). Later methods, such as profiles [9] and profile hidden Markov models (profile HMM) [8],
collect aggregate statistics from a group of sequences known to belong to the same family. Such
generative approaches only make use of positive training examples, while the discriminative ap-
proaches attempt to capture the distinction between different classes by considering both posi-
tive and negative examples. In many sequence analysis tasks, the discriminative methods such
as kernel-based [22] machine learning methods provide the most accurate results [7, 12, 17, 21].
Several types of kernels for protein homology detection have been proposed over the last decade.
In [11], Jaakkola et al. proposedSVMFisher, derived from probabilistic models. Leslie et al. in [17]
proposed a class of kernels that operate directly on stringsand derive features from the sequence
content. Both classes of kernels demonstrated improved discriminative power over methods that
operate under generative settings.

Remote homology detection problem is typically characterized by fewpositive trainingse-
quences accompanied by a large number of negative training examples. Experimentally labeling
the sequences is costly leading to the need to leverageunlabeled datato refine the decision bound-
ary. The profile kernel [13] and the mismatch neighborhood kernel [23] both use unlabeled data
sets and show significant improvements over the sequence classifiers trained under the supervised
setting. We believe the major contributions for their greatsuccess come from first, leveraging
unlabeled data and second, the use ofmutational neighborhoodto model amino acid substitution
process. However, kernel evaluation based on the induced mutational neighborhood incurs expo-
nential complexity in the size of the alphabet set hence hindering the use of such powerful tools.

Another missing component in previous studies for large-scale semi-supervised protein ho-
mology detection is a systematic and biologically motivated approach for leveraging the unlabeled
data set. In this study, we address both issues. First, we employ a class of previously established
kernels, the Sparse Spatial Sample Kernels (SSSK) [15]. This class of biologically motivated ker-
nels model mutation, insertion and deletion effectively and induce low-dimensional feature space;
moreover, the computational complexity of kernel evaluation based on feature matching is in-
dependent of the size of the alphabet set and such key characteristics opens the door for rapid
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large-scale semi-supervised learning. Second, we proposea biologically meaningful way of ex-
tracting relevant information from the unlabeled databasefor semi-supervised learning. Third, we
also propose a method to remove the bias caused by overly represented or duplicated unlabeled
sequences which are commonly seen in uncurated sequence databases. Our experimental results
show that the combination of these approaches yields state-of-the-art performance that are signif-
icantly better than previously published methods and also exhibit order-of-magnitude differences
in experimental running time.

2 Background

In this section, we briefly review previously published state-of-the-art methods for protein ho-
mology detection. We denote the alphabet set asΣ in the whole study. Given a sequence X the
spectrum-kkernel [16] and themismatch(k,m)kernel [17] induce the following|Σ|k-dimensional
representation for the sequence:

Φ(X) =

(

∑

α∈X

I(α, γ)

)

γ∈Σk

, (1)

where under the spectrum-k kernel,I(α, γ) = 1 if α = γ and under the mismatch(k,m) kernel,
I(α, γ) = 1 if α ∈ N(γ, m) andN(γ, m) denotes the set ofk-mer mutational neighborhood
induced by thek-merγ for up tom mismatches or substitutions.

Both spectrum-k and mismatch(k,m) kernel directly extract string features based on the ob-
served sequence. Under the mismatch representation, all substitutions are treated as equally likely,
which may not be deemed practical due to the physical and chemical properties of amino acids.
The profile kernel [12] takes such constraints into consideration: given a sequenceX and its corre-
sponding profile [9] PX , Kuang et al. [12, 13] define the|Σ|k-dimensional profile(k,σ) represen-
tation ofX as:

Φprofile(k,σ)(X) =





∑

i=1···(TP
X
−k+1)

I(PX(i, γ) < σ)





γ∈Σk

, (2)

whereσ is a pre-defined threshold,TPX
denotes the length of the profile andPX(i, γ) the cost of

locally aligning thek-mer γ to thek-length segment starting at theith position ofPX . Explicit
inclusion of the amino acid substitution process allows both the mismatch and profile kernels to
significantly outperform the spectrum kernel and demonstrate state-of-the-art performance under
both supervised and semi-supervised settings [23, 12]. However, such method of modeling sub-
stitution process induces ak-mer mutational neighborhood that is exponential in the size of the
alphabet set during the matching step for kernel evaluation; for the mismatch(k,m) kernel, the size
of the inducedk-mer neighborhood iskm|Σ|m and for the profile(k,σ) kernel, the size of the neigh-
borhood is bounded below bykm|Σ|m, above by|Σ|k, and is dependent on the threshold parameter
σ. Increasingm or σ to incorporate more mismatches will incur higher complexity for computing
the kernel matrix hence hindering the use of such powerful tools.
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Finally, to construct the sequence profiles required for computation of the profile kernel, we
need to leverage the unlabeled sequences to avoid overfitting of the profile. For the mismatch string
kernel, Weston et al. propose to use thesequence neighborhood kernelto leverage the unlabeled
sequences in [23].

2.1 The sequence neighborhood kernel

The sequence neighborhood kernels take advantage of the unlabeled data using the process of
neighborhood induced regularization. LetΦorig(X) be the original representation of sequenceX.
Also, let N(X) denote thesequence neighborhoodof X 1. Weston et al. proposed in [23] to
re-representX using:

Φnew(X) =
1

|N(X)|

∑

X′∈N(X)

Φorig(X ′). (3)

Under the new representation, the kernel value between the two sequencesX andY becomes:

Knbhd(X, Y ) =
∑

X′∈N(X),Y ′∈N(Y )

K(X ′, Y ′)

|N(X)||N(Y )|
. (4)

Note that under such settings, alltraining and testingsequences will assume a new representa-
tion, whereas in a traditional semi-supervised setting, unlabeled data are used during thetraining
phase only. The authors choose the mismatch representation for the sequences and show that
the discriminative power of the classifiers improve significantly once information regarding the
neighborhood of each sequence is available. However, the exponential size of the incurredk-mer
mutational neighborhood makes large-scale semi-supervised learning under the mismatch repre-
sentation very computationally demanding and cannot be performed using only moderate compu-
tational resources.

3 Proposed methods

In this section, we first discuss thesparse spatial sample kernels(SSSK) for protein homology
detection. Such kernels effectively model the insertion, deletion and substitution processes and
the complexity of the string matching step for kernel evaluation is independent of the size of the
alphabet set. The kernels show very promising results underthe supervised setting and also un-
der the semi-supervised setting with a small unlabeled sequence data set [15]. Next, we discuss
a systematic and biologically motivated way to extract onlyrelevant information from the unla-
beled database. Finally we also discuss how to remove the bias caused by duplicated or overly
represented sequences which are commonly found in large uncurated sequence databases. The
combination of the proposed methods enables fast and accurate semi-supervised learning for pro-
tein homology detection.

1We will discuss how to defineN(X) in later sections.
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3.1 The sparse spatial sample kernel

The class ofsparse spatial sample kernels, proposed by Kuksa et al. [15] have the following form:

K(X, Y |k, t, d) =
∑

(a1,d1,...,dt−1,at)

ai∈Σk,0≤di<d

C(a1, d1, a2, d2, ..., dt−1, at|X)C(a1, d1, a2, d2, ..., dt−1, at|Y ), (5)

whereC(a1, d1, · · · , at−1, dt−1, at|X) denotes the number of times we observe substringa1
d1↔

a2,
d2↔, · · · ,

dt−1

←→ at (a1 separated byd1 characters froma2, a2 separated byd2 characters froma3,
etc.) in the sequenceX. This is illustrated in Figure1. The kernel implements the idea of sampling
the sequences at different resolutions and comparing the resulting spectra; similar sequences will
have similar spectrum at one or more resolutions. This takesinto account possible mutations as
well as insertions and deletions. Each sample consists oft spatially-constrained probes of sizek,
each of which lie less thand positions away from its neighboring probes. The parameterk controls
the individual probe size,d controls the locality of the sample andt controls the cardinality of the
sampling neighborhood. In this work, we use short samples ofsize1 (i.e. k = 1) and sett to 2 (i.e.
features are pairs of monomers) or3 (i.e. features are triples of monomers). The spatial sample
kernels, unlike the family of spectrum kernels [16, 17], not only take into account the feature
counts, but also include spatial configuration information, i.e. how the features are positioned in
the sequences. The spatial information can be critical in establishing similarity of sequences under
complex transformations such as the evolutionary processes in protein sequences. The addition of
the spatial information experimentally demonstrates verygood performance, even with very short
sequence features (i.e. k = 1), as we will show in section4.

Figure 1: Contiguous k-mer featureα of a traditional spectrum/mismatch kernel (top) contrasted
with the sparse spatial samples of the proposed kernel (bottom).

The use of short features can also lead to significantly lowercomputational complexity of the
kernel evaluations. The dimensionality of the features induced by the spatial sample kernels is
|Σ|tdt−1 for the choice ofk = 1. As a result, for triple(1,3) (k = 1, t = 3, d = 3) and double-
(1,5) (k = 1, t = 2, d = 5) feature sets, the dimensionalities are72, 000 and2, 000, respectively,
compared to3, 200, 000 for the spectrum(k) [16], mismatch(k,m) [17] and profile(k,σ) [12] kernels
with the common choice ofk = 5. In Figure2 we show the differences between the spatial
(double(1,5)) and the spectrum (mismatch(5,1)) features on two slightly diverged sequences,S and
S ′. In the mismatch features, each symbol ’X’ represent an arbitrary symbol in the alphabet set,
Σ. As a result, each feature basis corresponds to|Σ| features. Such way of modeling substitution
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induces ak-mer mutational neighborhood inO(km|Σ|m) size. In contrast, the spatial features
sample the sequences at different resolutions and therefore performing string matching does not
require neighborhood expansion; matching on a position with substitution is achieved by extending
the current spectrum. Such way of modeling substitution opens the door for a matching algorithm
with low complexityi.e. independent of the size of the alphabet, which in turns opensthe door for
fast large-scale semi-supervised learning, as we will see in Section4. In the figure, we represent
all common features between the original and the mutated strings with bold fonts and red (light)
color.

S = HKYNQLIM
XKYNQ
HXYNQ
HKXNQ
HKYXQ
HKYNX

XYNQL
KXNQL
KYXQL
KYNXL
YKNQX
XQLIM
NXLIM
NQXIM
NQLXM
NQLIX

XNQLI
YXQLI
YNXLI
YNQXI
YNQLX

XKINQ
HXINQ
HKXNQ
HKIXQ
HKINQ

XINQI
KXNQI
KIXQI
KINXI
KINQX
XQIIM
NXIIM
NQXIM
NQIXM
NQIIX

XNQII
IXQII
INXII
INQXI
INQIX

HK
KY
YN
NQ
QL
LI
IM

H_Y
K_N
Y_Q
N_L
Q_I
L_M

H__N
K__Q
Y__L
N__I
Q__M

H___Q
K___L
Y___I
N___M

H____L
K____I
Y____M

HK
KI
IN
NQ
QI
II
IM

H_I
K_N
I_Q
N_I
Q_I
I_M

H__N
K__Q
I__I
N__I
Q__M

H___Q
K___I
I___I
N___M

H____I
K____I
I____M

mismatch
(5,1)

S’= HK I NQI IM

double-
(1,5)

Figure 2: Differences in handling substitutions by the mismatch and spatial features. We represent
all common features between the original and the mutated strings,S andS ′, with bold fonts and red
(light) color. Each symbol ’X’ under the mismatch representation represent an arbitrary symbol in
the alphabet setΣ. As a result, each feature basis corresponds to|Σ| features.

To compute the kernel values under the supervised setting, we first extract the features and
sort the extracted features in linear time using counting sort. Finally we count the number of
distinct features and for each observed feature, we update the kernel matrix. ForN sequences
with the longest lengthn andu distinct features, computing theN-by-N kernel matrix takes linear
O(dnN + min(u, dn)N2) time.

Under the semi-supervised setting, on the one hand, direct use of equation4 for computation of
the refined kernel values between sequencesX andY requires|N(X)|×|N(Y )| kernel evaluations
(i.e. quadratic running time in the size of the sequence neighborhood); on the other hand, use of
Equation3 requires explicit representation of the sequences which can be problematic when the
dimensionality of the feature space is high. As a result, performing suchsmoothingoperation
over the mismatch(5,1) representation is computationally intensive for both methods due to first,
the exponential length of the inducedk-mer mutational neighborhood and second, the quadratic
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running time induced by equation4.
Equation3 lends a useful insight into the complexity of the smoothing operation. For any

explicit representationΦ(X), its smoothed version can be computed in time linear in the size of
the neighborhoodN(X), therefore the smoothed kernel can also be evaluated in timelinear in
the neighborhood size. As mentioned before, the smoothed representation under the mismatch
features cannot be efficiently computed because of the exponential size of the inducedk-mer
neighborhood; however, for the double and triple feature sets the smoothed representations can
be computed explicitly, if desired. In our experiments, we do not compute the explicit represen-
tation and instead use implicit computations over induced representations: for each neighborhood
setN(X), we first sort the features and then obtain counts for distinct features to evaluate the
kernel. The low-dimensional feature space and efficient feature matching induced by the kernels
ensure low complexity for kernel evaluation. Kuksa et al. provides a more detailed description of
algorithm for spatial kernel evaluation under both supervised and semi-supervised settings in [14].

3.2 Extracting relevant information from the unlabeled sequence database

Remote homology detection problem is typically characterized byfew positive sequencesaccom-
panied by a large number ofnegative examples. Experimentally labeling the sequences is costly,
leading to the need to leverageunlabeled datato refine the decision boundary. In [23], Weston
et al. leverage the unlabeled sequences to construct asequence neighborhood kernelunder the
mismatch representation to refine the decision boundary. However, in most sequence databases,
we have multi-domain protein sequences in abundance and thus, such multi-domain sequences can
be similar to several unrelated single-domain sequence, asnoted in [23]. Direct use of such long
sequences may falsely establish similarities among unrelated sequences. Under semi-supervised
learning setting, our goal is to recruitneighbors, or homologuesof training and testing sequences
and use these intermediate neighbors to establish similarity between the remotely homologous pro-
teins, which bear little to no similarity on the primary sequence level. As a result, the quality of
the intermediate neighboring sequences is crucial for inferring labels of remote homologues. Se-
quences that are too long will contribute excessive features, while sequences that are too short often
have missing features and hence induce very sparse representation, which in turn bias the averaged
neighborhood representation. As a result, the performanceof the classifiers will be compromised
with direct use of these sequences. Weston et al. in [23] proposed to only capture neighboring
sequences with maximal length of250 as a remedy. However, such practice may not offer a direct
and meaningful biological interpretation and may discard valuable information. In this study, we
propose to extract onlystatistically significant sequence regions, reported by PSI-BLAST, from
the unlabeled neighboring sequences. We summarize all competing methods in below:

• unfiltered: all neighboring sequences are recruited. This is to show how much excessive
or missing features in neighboring sequences that are too long or too short compromise the
performance of the classifiers.

• extracting the most significant region: for each recruited neighboring sequence, we extract
only the moststatistically significant sequence regionreported by PSI-BLAST; such sub-
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sequence is more likely to be biologically relevant to the query sequence.

• filter out sequences that are too long or too short: for each query sequenceX, we remove
any neighboring sequencesY if TY > 2TX or TY < TX

2
, whereTX is the length of sequence

X. This method will alleviate the effect of the excessive and missing features induced by the
unfiltered method.

• maximal length of 250: this is the method proposed by Weston et al. in their study.

To recruit neighbors of a sequenceX, we query the unlabeled database using PSI-BLAST [1]
with two iterations. We recruit all sequences with e-valuesless than or equal to0.05 as the neigh-
boring sequences ofX. To obtain only relevant information from a neighboring sequence, we ex-
tract from the unlabeled neighboring sequence the most significant region (lowest e-value) reported
by PSI-BLAST. We illustrate the procedure in Figure3. In the figure, given the query sequence,
PSI-BLAST reports sequences (hits) containing substringsthat exhibit statistically significant sim-
ilarity with the query sequence. For each reported hit with e-value less than or equal to0.05, we
extract the most significant region and recruit the extracted sub-sequence to the neighboring set of
the query sequence.

…

…

query 
sequence PSI-BLAST

unlabeled
sequence database

significant hit

statistically significant region

Figure 3: Extracting only statistically significant regions (red/light color, bold line) from the sig-
nificant hit reported by PSI-BLAST

3.3 Clustering the neighboring sets

The smoothing operation in Equation3 is susceptible to overly represented neighbors in the unla-
beled data set since if we we append many replicated copies ofa neighbor to the set, the computed
average will be biased towards such sequence. In large uncurated sequence databases, duplicated
sequences are common. For example, some sequences in Swiss-Prot have the so-calledsecondary
accession numbers. Such sequences can be easily identified and removed. However, there are two
other types of duplication that are harder to find: sequencesthat are nearly identical and sequences
that contain substrings that have high sequence similarityand are significant hits to the query se-
quence. Existence of such examples will bias the estimate ofthe averaged representation, hence
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compromising the performance of the classifiers. Pre-processing the data is necessary to remove
such bias. In this study we propose to cluster the neighboring sets as a remedy. Conducting cluster-
ing analysis typically incurs quadratic complexity in the number of sequences to be clustered. As
a result, though clustering the union of all neighbor sets ismore desirable, to minimize the experi-
mental running time we propose to cluster each reported neighbor setone at a time; for example,
the union of all neighbor sets (e-value less than or equal to0.05) induced by the NR unlabeled
database is129, 646, while the average size of the neighbor sets is115 (reported in later sections).
Clustering each reported neighbor set individually will lead to tremendous saving in experimental
running time.

We use the programCDHit [18] for clustering analysis. The program employs a heuristic
(incremental clustering algorithm) to avoid all-by-all comparisons. First, the sequences are sorted
in decreasing length with the longest one representing the clustering center. Next, each remaining
sequences is compared to each existing clustering center and will be assigned to the first cluster
in which the similarity between the cluster representativeand the query sequence exceeds a pre-
defined threshold. If no such cluster exists, the sequence will form a new cluster. In this study we
perform clustering at70% sequence identity level.

4 Experiments

We present experimental results for protein remote homology detection under the semi-supervised
setting on the SCOP 1.59 [19] data set, published in [23]. The data set contains54 target families
with 7, 329 isolated domains. Only2, 862 domains out of7, 329 are labeled, which allows to
perform experiments in both supervised (labeled sequencesonly) and semi-supervised (labeled
and unlabeled sequences) settings. Different instances ofthis data set have been used as a gold
standard for protein remote homology detection in various studies.

In [15], Kuksa et al. show that the class of spatial sample kernels achieve the state-of-the-
art performance under the supervised setting and semi-supervised setting, where in the semi-
supervised setting, the unlabeled data set comes from the SCOP 1.59 [19] sequence database itself.
Note that sequences in the SCOP database are represented in single domains and therefore, use of
such unlabeled data set does not raise any concern over extracting relevant information from a
multi-domain sequence. In this study, we use three larger unlabeled sequence databases, some
of which contains abundant multi-domain protein sequencesas well as duplicated or overly repre-
sented sequences. The three databases are PDB [5]2 (116,697 sequences), Swiss-Prot [6]3 (101,602
sequences), and thenon-redundant(NR) sequence database (534,936 sequences). To adhere to the
true semi-supervised setting,all sequences in the unlabeled data sets that are identical to any test
sequences are removed.

We evaluate all methods using theReceiver Operating Characteristic(ROC) and ROC50 [10]
scores. The ROC50 score is the (normalized) area under the ROC curve computed for up to50
false positives. With a small number of positive testing sequences and a large number of negative

2as of Dec. 2007
3We use the same version as the one used in [23] for comparative analysis of performance
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double(1,5) triple(1,3)
#neighbors ROC ROC50 p-value ROC ROC50 p-value

PDB
unfiltered 14/5/311 .9333 .7324 .3498 .9393 .7444 3.46e-04
region 11/5/311 .9533 .7352 - .9666 .8074 -
no tails 11/3/286 .9255 .6926 .0197 .9433 .7456 3.50e-03
by length 11/2/300 .9254 .6848 6.02e-02 .9418 .7127 4.53e-05
Swiss-Prot
unfiltered 56/28/385 .9145 .6360 6.55e-04 .9245 .6908 2.46e-04
region 56/28/385 .9593 .7635 - .9752 .8556 -
no tails 27/4/385 .9160 .6318 2.12e-04 .9361 .6938 1.55e-06
by length 21/3/385 .9070 .5652 2.03e-05 .9300 .6514 7.33e-07
NR
unfiltered 115/86/490 .9319 .6758 1.40e-03 .9419 .7328 1.07e-05
region 115/86/490 .9715 .7932 - .9824 .8861 -
no tails 55/13/399 .9463 .6775 4.40e-03 .9575 .7438 9.47e-06
by length 38/10/426 .9275 .6656 7.32e-04 .9513 .7401 2.66e-06
∗p-value: signed-rank test on ROC50 scores against region
#neighbors: mean/median/max

Table 1: The overall prediction performance of all comparedmethods over various unlabeled data
sets.

testing sequences, the ROC50 score is typically more indicative of the prediction accuracy of a
homology detection method than the ROC score.

In all experiments, all kernel valuesK(X, Y ) are normalized using

K ′(X, Y ) =
K(X, Y )

√

K(X, X)K(Y, Y )
(6)

to remove the dependency between the kernel value and the sequence length. We use the sequence
neighborhood kernel in Equation4, as in [23], under the spatial sample representation. To per-
form our experiments, we use an existing SVM implementationfrom a standard machine learning
package SPIDER4 with default parameters.

4.1 Experimental results without clustering

In Table1, we show the performance in ROC and ROC50 scores for the four competing methods
on the double(1,5) and triple(1,3) feature sets using3 different unlabeled sequence data sets. We
denote the method of filtering out sequences that exhibit a two-fold difference in length with the
query sequence asno tailsand the method of filtering out sequences whose length is greater than

4http://www.kyb.tuebingen.mpg.de/bs/people/spider
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250 asby length. In all but one case, extracting only relevant regions from the unlabeled sequence
leads to significant improvement in the ROC and ROC50 scores compared to the unfiltered method.
In the second column, we note the number of recruited neighbors (mean, median, and max). We
also calculate the p-values of each competing methodagainst the regionmethod using Wilcoxon
signed-rank test. In all cases except one, we observe statistically significant improvement in clas-
sification performance. Extracting significant regions forneighborhood smoothing improves the
ROC and ROC50 scores on average by0.0373 and0.1048, respectively, when compared to the
unfilteredmethod. We show the ROC50 plots of the four competing methodsusing the triple(1,3)
feature set in Figure4. In the figures, the horizontal axis corresponds to an ROC50 score and
the vertical axis denotes the number of experiments, out of54, with the corresponding or higher
ROC50 score. In all cases, we observe that the ROC50 curves for region extraction show strong
dominance over all other competing methods. Based on the table and figures, we also observe that
filtering out neighboring sequences based on the length degrades the performance of the classifiers
on the PDB (Figure4(a)) and Swiss-Prot (Figure4(b)) unlabeled sequence databases while in the
case of using the NR data set (Figure4(a)), the classifier shows slight improvement. Although
filtering out sequences based on the length removes the unnecessary and noisy features from irrel-
evant regions within the sequences, at the same time, longerunlabeled sequences that carry critical
information for inferring the class labels of the test sequences are also discarded. In a larger un-
labeled data set (NR), such problem is alleviated since larger databases are more likely to contain
short sequences carrying such critical information.
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(b) Swiss-Prot
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Figure 4: The ROC50 plots of four competing methods using thetriple-(1,3) feature set with
PDB, Swiss-Prot and NR databases as unlabeled data sets, respectively. The ROC50 curves of
the method that only extracts relevant regions from the neighboring sequences consistently show
strong dominance over all competing methods.

4.2 Experimental results with clustering

In Table2, we present the performance in ROC and ROC50 scores for the four competing methods
on the double(1,5) and triple(1,3) feature sets using3 different unlabeled data sets. All smoothed
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double(1,5) triple(1,3)
#neighbors ROC ROC50 p-value ROC ROC50 p-value

PDB
unfiltered 11/4/116 .9369 .7142 6.74e-02 .9439 .7585 4.70e-03
region 11/4/120 .9599 .7466 - .9717 .8240 -
no tails 9/3/102 .9291 .6902 4.8e-03 .9490 .7545 2.30e-03
by length 7/2/104 .9229 .6589 1.10e-03 .9490 .7211 2.66e-05
Swiss-Prot
unfiltered 30/17/223 .9526 .6397 3.76e-04 .9464 .7474 1.50e-03
region 27/15/210 .9582 .7701 - .9732 .8605 -
no tails 15/3/192 .9214 .6446 1.95e-04 .9395 .7160 2.30e-06
by length 10/2/107 .9100 .5841 1.21e-05 .9348 .6817 7.33e-07
NR
unfiltered 77/55/344 .9403 .6874 5.62e-04 .9556 .7566 2.20e-05
region 67/47/339 .9734 .8048 - .9861 .8944 -
no tails 37/10/310 .9452 .6815 2.90e-04 .9602 .7486 2.06e-07
by length 24/8/263 .9313 .6686 1.00e-03 .9528 .7595 2.56e-07
∗p-value: signed-rank test on ROC50 scores against region
#neighbors: mean/median/max

Table 2: The overall prediction performance of all comparedmethods over various unlabeled data
setswith clustering the neighbor sets. All neighbor sets are clustered on a 70% sequence identity
level and representatives of each cluster are chosen to forma reduced neighbor set.

representations are induced by the reduced neighbor sets. In contrast to Table1, extracting relevant
regions from neighboring sequences and performing clustering on the neighbor sets significantly
improve performance onall unlabeled data sets. With clustering, extracting regions improves
the ROC and ROC50 scores on average by0.0245 and0.0994, respectively, when compared to
theunfilteredmethod. We again observe performance degradation when filtering out neighboring
sequences based on their lengths. In the second column, we show the number of neighbors (mean,
median, and maximum) after clustering. In most cases, we observe a2-3 fold reduction in the
number of neighbors contrasting to the neighborhood size reported in Table1. We note that the
reduction in the neighborhood size is critical for faster training and classification.

Finally we show the experimental running time in Table3 under various settings, performed on
a3.6GHz CPU, based on the2, 862 labeled sequences in the SCOP 1.59 data set. The average re-
duction in running time for kernel evaluation is10.32% for the double(1,5) kernel and10.66% for
the triple(1,3) kernel. Clustering takes very little CPU time; for example, clustering the neighbor
sets induced by the NR sequence database on all2, 862 labeled sequences takes126.24 seconds
in total on the region-based method. We want to note the largefold change in running time by
adding one spatial sample (t = 3 for triple in contrast tot = 2 in double). Increasing the number
of spatial samples by1 implies multiplying the complexity for string matching byd, the maximum
number of distance allowed between two samples. After clustering, the reduction in experimental



– 12 –

double(1,5) triple(1,3)
without clustering with clustering without clustering with clustering

PDB
unfiltered 10.70 10.19 170.45 161.01
region 10.22 9.98 99.57 95.05
no tails 10.17 9.94 103.39 104.49
by length 9.97 9.85 73.85 73.36
Swiss-Prot
unfiltered 16.14 12.84 802.27 719.62
region 12.74 11.17 289.03 240.15
no tails 11.61 10.52 186.06 160.84
by length 10.64 10.01 107.62 94.28
NR
unfiltered 23.26 18.60 1451.52 1345.89
region 15.69 13.54 630.95 531.07
no tails 13.69 12.32 383.80 348.52
by length 11.66 10.74 245.23 213.02

Table 3: The experimental running time (seconds) for constructing the (2862-by-2862) kernel ma-
trices on each unlabeled data set under different settings.The experiments are performed on a
3.6GHz CPU.

running time will be significant for other tasks that requiremore spatial samples (increasingt),
larger distance between each spatial samples (increasingd), larger sequence database (increasing
N) or longer sequences (increasingn) since the complexity for feature matching exhibit multi-
plicative dependency on these parameters ; performing feature matching incursO(dt−1HNn) and
O(km+1|Σ|mHnN) complexity for spatial and mismatch(k,m) kernels, respectively, whereH de-
notes the size of the sequence neighborhood. Performing clustering reduces the neighborhood size
by two fold on average, which in turn implies less computational resources for storage: under the
discriminative kernel learning setting, we need to save thesupport vectors along with their corre-
sponding neighbor sets. The savings in experimental running time for kernel evaluation will be
even more pronounced if the previously described parameters are increased simultaneously. For a
detailed analysis of computational complexity, please refer to [14].

4.3 Comparison with other state-of-the-art methods

We compare the performance of our proposed method with previously published state-of-the-art
methods over various unlabeled sequence databases and present the overall prediction performance
of all compared methods in Table4. For spatial kernels, all reported scores are based on extract-
ing the most significant region and performing clustering onthe neighbor sets. We perform all
experiments on a3.6GHz machine with2GB of memory. Computation of the mismatch neigh-
borhood kernels is computationally demanding and typically cannot be accomplished on a single
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PDB ROC ROC50
double-(1,5) neighborhood .9599 .7466
triple-(1,3) neighborhood .9717 .8240
profile(5,7.5) .9511 .7205

Swiss-Prot
double-(1,5) neighborhood .9582 .7701
triple-(1,3) neighborhood .9732 .8605
profile(5,7.5) .9709 .7914
mismatch nbhd† .955 .810

NR
double-(1,5) neighborhood .9720 .8076
triple-(1,3) neighborhood .9861 .8944
profile(5,7.5)-2 iterations .9734 .8151
profile(5,7.5)-5 iterations‡ .984 .874
profile(5,7.5)-5 iter. with secondary structure‡ .989 .883
†:directly quoted from [23] ;‡:directly quoted from [13]

Table 4: The overall prediction performance of all comparedmethods over various unlabeled data
sets. For spatial kernels, all reported scores are based on extracting the most significant region and
performing clustering on the neighbor sets.

machine for anything but relatively small unlabeled data sets. Therefore, the results for the mis-
match neighborhood kernel can only be shown using the previously published summary statis-
tics [23] on Swiss-prot, a moderately populated sequence database.For each unlabeled data set,
we highlight the best ROC and ROC50 scores; on all unlabeled data sets, the triple(1,3) neighbor-
hood kernel achieves the best performance. Furthermore, weachieve such performance by only2
PSI-BLAST iterations. For example, the triple(1,3) neighborhood kernel with2 PSI-BLAST itera-
tions outperforms the profile(5,7.5) kernel with5 PSI-BLAST iterations. Moreover, the triple(1,3)
neighborhood kernel with2 PSI-BLAST iterations on the PDB unlabeled data set already outper-
forms the profile(5,7.5) kernel with2 PSI-BLAST iterations on the NR unlabeled data set. We
also note that the performance of our kernels is achieved using primary sequence information only.
However, as shown in the table, the triple(1,3) kernel still outperforms the profile(5,7.5) kernel with
added secondary structure information. Such higher order information (e.g. secondary structure),
if available and desirable, can be easily included in the feature set. In this study, we do not pursue
such direction.

We also show the statistical significance of the observed differences between pairs of methods
on various unlabeled data sets in Table5. All the entries in the table are the p-values of the
Wilcoxon signed-rank test using the ROC50 scores. For each unlabeled data set, we highlight the
method that has the best overall performance. The triple(1,3) kernel consistently outperform all
other kernels, with high statistical significance.

Next, in the upper panel of Figure5, we show the ROC50 plots of the double(1,5) neigh-
borhood, triple(1,3) neighborhood and profile(5,7.5) kernels using PDB (first column), Swiss-Prot
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SCOP 1.59
mismatch profile double triple

mismatch - 2.245e-03 1.804e-02 3.570e-06
profile 2.245e-03 - 2.874e-01 9.615e-09
double 1.804e-02 2.874e-01 - 6.712e-06
triple 3.570e-06 9.615e-09 6.712e-06 -

PDB
double triple profile

double - 1.017e-01 4.762e-02
triple 1.017e-01 - 7.666e-06
profile 4.762e-02 7.666e-06 -

Swiss-Prot
double triple profile

double - 9.242e-05 4.992e-01
triple 9.242e-05 - 2.419e-04
profile 4.992e-01 2.419e-04 -

NR
double triple profile

double - 8.782e-06 9.762e-01
triple 8.782e-06 - 7.017e-06
profile 9.762e-01 7.017e-06 -

Table 5: Statistical significance (p-values of the Wilcoxonsigned-rank test) of the observed dif-
ferences between pairs of methods (ROC50 scores) on unlabeled data sets. Triple denotes the
triple-(1,3) neighborhood kernel, double denotes the double-(1,5) neighborhood kernel, mismatch
denotes the mismatch(5,1) neighborhood kernel, and profile denotes the profile(5,7.5) kernel.

(second column) and NR (third column) sequence databases asthe unlabeled data sets. The ROC50
curves of the triple(1,3) neighborhood kernel on all unlabeled data sets consistently show strong
dominance over those of other two kernels. Furthermore, theperformance of the double(1,5) neigh-
borhood kernel is on par with that of the profile(5,7.5) kernel. In the lower panel, we show the
scatter plots of the ROC50 scores of the triple(1,3) kernel and the profile(5,7.5) kernel. Any point
falling above the diagonal line in the figures indicates better performance of the triple(1,3) kernel
over the profile(5,7.5) kernel. As can be seen from these plots, the triple kernel outperforms the
profile kernel on all three data sets (43/37/34 wins and 4/5/10 ties, out of54 experiments, on PDB,
Swiss-Prot, and NR data sets, respectively).

Finally, in Table6, we show the experimental running time for constructing thekernel matrix,
based on all available sequences in the SCOP1.59 data set. The size of the kernel matrix is
7329-by-7329. For the semi-supervised setting (neighborhood kernels),we report average running
time on the data sets used (i.e. PDB, Swiss-Prot, and non-redundant (NR) sequence databases).
As mentioned in previous sections, both mismatch and profilekernels require higher complexity
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(a) PDB

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
5

10

15

20

25

30

35

40

45

50

55

ROC50

N
um

be
r 

of
 fa

m
ili

es

(1,5)−double nbhd
(1,3)−triple nbhd
profile(5,7.5)

(b) Swiss-Prot
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(c) NR
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(d) PDB
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(e) Swiss-Prot
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Figure 5: In the upper panel, we show the ROC50 plots of three different features using PDB,
Swiss-Prot and NR databases as unlabeled data sets, respectively. In the lower panel, we show the
scatter-plot of ROC50 scores of the triple-(1,3) kernel (vertical) and the profile(5,7.5) kernel (hor-
izontal). Any point above the diagonal line in the figures(d),(e),(f) indicates better performance
for the triple-(1,3) kernel.

to perform feature matching due to the exponential size of the mutational neighborhood, which in
turns depend on the size of the alphabet set, whereas the complexity of performing feature matching
for the spatial features is independent of the alphabet set size. This complexity difference leads
to order-of-magnitude improvements in the running times ofthe spatial sample kernels over the
mismatch and profile kernels. The difference is even more pronounced when kernel smoothing is
used under a semi-supervised setting. The neighborhood mismatch kernel becomes substantially
more expensive to compute for large unlabeled data sets as indicated in [13, 23] by the authors.

5 Discussion

We first illustrate the benefit of extracting only statistically significant regions from the neighboring
sequences from a machine learning perspective and then we discuss the biological motivation of
the spatial feature sets. The spatial features allow alphabet-free matching and model substitution,
insertion and deletion effectively. The combination of both methods leads to fast and accurate
semi-supervised protein remote homology detection.
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Method Running time (s)
supervised methods
Triple(1,3) kernel 112
Double(1,5) kernel 54
Mismatch(5,1) kernel 948
semi-supervised methods
Triple(1,3) neighborhood kernel 327
Double(1,5) neighborhood kernel 67
Mismatch(5,1) neighborhood kernel -
Profile(5,7.5) kernel 10 hours†
†: the running time reported in [13]

Table 6: Experimental running time of all methods based on all sequences in the SCOP1.59
data set. The size of the kernel is7329-by-7329. For triple and double kernels, under the semi-
supervised setting, the reported running time are based on extracting relevant regions and perform-
ing clustering on neighboring sets.

5.1 Motivation for extracting relevant regions

To illustrate the benefit of extracting only statistically significant regions from an unlabeled se-
quence, consider the example in Figure6. In the figure, colors indicate membership: yellow
(shaded) corresponds to the positive class and green (pattern) corresponds to the negative class.
Sequences that demonstrate statistically significant similarity are more likely to be evolutionarily
related and therefore to belong to the same superfamily. Thegoal is to infer membership of the
test (unshaded) sequences via the unlabeled sequence (in the middle). In the figure, arcs indicate
(possibly weak) similarity induced by shared features, denoted by the black boxes, and absence of
arcs indicates no similarity. As can be seen from the figure, the positive training and test sequences
share no features and therefore have no similarity; however, the unlabeled sequence shares some
features with both sequences in the reported region, which are very likely to be biologically relevant
to both positive training and test sequences and therefore establishes the similarity between them.
On the other hand, if the whole unlabeled sequence is recruited as a neighbor without discarding
irrelevant regions, the similarity between the positive training and negative testing sequences will
be incorrectly established, hence compromising the performance of the classifiers.

5.2 Biological Motivation of the spatial feature sets

Compared to mismatch/profile kernels, the feature sets induced by our kernels cover segments of
variable length (e.g. 2-6 and3-7 residues in the case of the double(1,5) kernel and the triple(1,3)
kernels, respectively), whereas the mismatch and profile kernels cover segments of fixed length
(e.g. 5 or 6 residues long) as illustrated in Figure1. Sampling at different resolutions also allows
to capture similarity in the presence of more complex substitution, insertion and deletion processes,
while sampling at a fixed resolution, the approach used in mismatch and spectrum kernels, limits
the sensitivity in the case of multiple insertions/deletions or substitutions. We illustrate the benefit
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? ?

+ training

+ test - test

unlabeled sequence

…

Figure 6: The importance of only extracting relevant regionfrom neighboring sequences (in the
middle): in the figure, the colors indicate the membership: yellow (shaded) indicates membership
of the positive class and green (pattern) indicates membership of the negative class. The goal is to
infer the label of the test (unshaded) sequences via the intermediate neighboring sequences. The
arcs in the figure indicate (possibly weak) similarity and absence of arcs indicates no similarity.
The black boxes in the sequence correspond to the shared features.

of multi-resolution sampling in Figure7. In the figure, we show six slightly diverged sequences
with the presence of both mutation and insertion. We also show the double(1,5) and mismatch(5,1)
kernel matrices. We observe that the spatial kernel still captures substantial amount of similarities
whereas the mismatch kernel, which performs fixed-resolution sampling captures little similarities
among the related sequences. Both images are shown on the same scales. Increasing the parameter
m (number of mismatches allowed) to accommodate multiple substitutions, in the case of mis-
match kernels, leads to an exponential growth in the size of thek-mer mutational neighborhood,
and results in high computational complexity. On the other hand, increasing the thresholdσ in the
profile kernel also incurs an exponential growth in the size of mutational neighborhood since in a
highly diverged region the profile may be flat.

6 Conclusion

In this study, we propose a systematic and biologically motivated approach for extracting relevant
information from unlabeled sequence database under the semi-supervised learning setting. We also
propose to perform clustering on each neighbor sets to remove the bias caused by duplicated or
overly represented neighboring sequences which are commonly found in large uncurated sequence
databases. Combing these approaches with the sparse spatial sample kernels we achieve fast and
accurate semi-supervised protein homology detection on three large unlabeled sequence databases.
The spatial kernels induce low-dimensional feature space,effectively model mutation, insertion,
and deletion with multi-resolution sampling and incur low computational complexity for kernel
evaluation; its running time on string matching is independent of the size of the alphabet set, mak-
ing rapid kernel evaluation possible on large sequence databases. The resulting classifiers based
on our proposed methods significantly outperform previously published state-of-the-art methods
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complex biological transformation:
mutation + deletion

S1: SVLLVKMS
S2: SVYFVKMS
S3: SVL-VKMS
S4: SVY-VKMS
S5: SVV--KMS
S6: SVV--RMS

multiple alignment
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Figure 7: The benefit of multi-resolution sampling: in the presence of both mutations and inser-
tions, the spatial kernel still captures substantial amount of similarities in such moderately con-
served region; on the other hand, the mismatch kernel, whichperforms fixed-resolution sampling
captures little similarity among related sequences.

in performance accuracy and exhibit order-of-magnitude differences in experimental running time.
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