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Classification of sequences drawn from a finite alphabet using a family of string kernels with inexact matching
(e.g., spectrum or mismatch) has shown great success in machine learning [6, 3, 9, 4]. However, selection of
optimal mismatch kernels for a particular task is severely limited by inability to compute such kernels for
long substrings with potentially many mismatches. We extend prior work on algorithms for computing (k,m)
mismatch string kernels and introduce a new method that allows us to evaluate kernels for large k, m. This
makes it possible to explore a larger set of kernels with a wide range of kernel parameters, opening a possibility
to better model selection and improved performance of the string kernels. To investigate the utility of large
(k,m) string kernels, we consider several sequence classification problems, including protein remote homology
detection, and music classification. Our results show that increased k-mer lengths with larger substitutions can
improve classification performance.

Background. A number of state-of-the-art approaches to classification of sequences over finite alphabet Σ
rely on fixed-length representations Φ(X) of sequences as the spectra (|Σ|k-dimensional histogram) of counts of
short substrings (k-mers), contained, possibly with up to m mismatches, in a sequence, c.f., spectrum/mismatch
methods [6, 7, 3]. However, computing similarity scores, or kernels, K(X,Y )=Φ(X)T Φ(Y ) using these repre-
sentations can be challenging, e.g., efficient O(km+1|Σ|m(|X| + |Y |)) trie-based mismatch kernel algorithm [7]
strongly depends on the alphabet size and the number of mismatches m.

More recently, [4] introduced linear time algorithms with alphabet-independent complexity O(ck,m(|X|+ |Y |)
applicable to computation of a large class of existing string kernels. The authors show that it is possible to
compute an inexact (k,m) kernel as

K(X,Y |m, k) =
∑
a∈X

∑
b∈Y

I(a, b) =

min(2m,k)∑
i=0

MiIi, (1)

where I(a, b) is the number of common substrings in the intersection of the mutation neighborhoods of a and
b, Ii is the size of the intersection of k-mer mutational neighborhood for Hamming distance i, and Mi is the
number of observed k-mer pairs in X and Y having Hamming distance i.

This result however requires that the number of identical substrings in (k,m)-mutational neighborhoods of k-
mers a and b (the intersection size) be known in advance, for every possible pair of m and the Hamming distance
d between k-mers (k and |Σ| are free variables). Obtaining the closed form expression for the intersection size
for arbitrary k, m is challenging, with no clear systematic way of enumerating the intersection of two mutational
neighborhoods. Closed form solutions obtained in [4] were only provided for cases when m is small (m ≤ 3).
No systematic way of obtaining these intersection sizes has been proposed in [4].

In this work we introduce a systematic and efficient procedure for obtaining intersection sizes that can be
used for large k and m and arbitrary alphabet size |Σ|. This will allow us to effectively explore a much larger
class of (k,m) kernels in the process of model selection which could further improve performance of the string
kernel method as we show experimentally.

Efficient evaluation of large sequence kernels. For large values of k and m finding intersection sizes
needed for kernel computation can be problematic. This is because while for smaller values of m combinatorial
closed form solution can be found easily, for larger values of m finding it becomes more difficult due to an
increase in the number of combinatorial possibilities as the mutational neighborhood increases (exponentially)
in size. On the other hand, direct computation of the intersection by trie traversal algorithm is computationally
difficult for large k and m as the complexity of traversal is O(km+1|Σ|k), i.e. is exponential in both k and m.
The above mentioned issues do not allow for efficient kernel evaluation for large k and m.

Reduction-based computation of intersection size coefficients. We will now show that it is possible to effi-
ciently compute the intersection sizes by reducing (k,m, |Σ|) intersection size problem to a set of less complex
intersection size computations and solving linear systems of equations. We discuss this approach below.

The number of k-mers at the Hamming distance of at most m from both k-mers a and b, I(a, b), can be
found in a weighted form

I(a, b) =

m∑
i=0

wi(|Σ| − 1)i. (2)

Coefficients wi depend only on the Hamming distance d(a, b) between k-mers a and b for fixed k, m, |Σ|.
For every Hamming distance 0 ≤ d(a, b) ≤ 2m, the corresponding set of coefficients wi, i = 0, 1, . . . ,m can be

found by solving a linear system Aw = I of m + 1 equations with each equation corresponding to a particular
alphabet size |Σ| ∈ {2, 3, . . . ,m + 2}. The left-hand side matrix A is an (m+1,m+1) matrix with elements
aij = ij−1, i = 1, . . . ,m + 1, j = 1, . . . ,m + 1.

A =


10 11 12 ... 1m

20 21 22 ... 2m

...
(m + 1)0 (m + 1)1 (m + 1)2 ... (m + 1)m


1



The right-hand side I = (I0, I1, . . . , Im)T is a vector of intersection sizes for a particular setting of k, m, d,
|Σ| = 2, 3, . . . ,m + 2. Here, Ii, i = 0 . . .m is the intersection size for a pair of k-mers over alphabet size i + 2.
Note that Ii need only be computed for small alphabet sizes, up to m + 2. Hence, this vector can feasibly be
computed using a trie traversal for a pair of k-mers at Hamming distance d even for moderately large k as
the size of the trie is only (m + 2)k as opposed to |Σ|k. This allows now to evaluate kernels for large k and
m as the traversal is performed over much smaller tries, e.g., even in case of relatively small protein alphabet
with |Σ| = 20, for m = 6 and k = 13, the size of the trie is 2013/813 = 149011 times smaller. Coefficients w
obtained by solving Aw = I do not depend on the alphabet size |Σ|. In other words, once found for a particular
combination of values (k,m), these coefficients can be used to determine intersection sizes for any given finite
alphabet |Σ| using Eq. 2.

Experimental evaluation. We evaluate the utility of large (k,m) computations as a proxy for model
selection, by allowing a significantly wider range of kernel parameters to be investigated during the selection
process. Such large range evaluation is the first of its kind, made possible by our efficient kernel evaluation
algorithm. In these evaluations we follow the experimental settings considered in [5] and [4]. We use standard
benchmark datasets: the SCOP dataset (7329 sequences, 54 experiments) [9] for remote protein homology
detection, and music genre data1 (10 classes, 1000 seqs) [8] for multi-class genre prediction.

Table 1: Remote homology. Classification perfor-
mance of the mismatch kernel method
Kernel Mean ROC Mean ROC50

mismatch(5,1) 87.75 41.92
mismatch(5,2) 90.67 49.09
mismatch(6,2) 90.74 49.66
mismatch(6,3) 90.98 49.36
mismatch(7,3) 91.31 52.00
mismatch(7,4) 90.84 49.29
mismatch(9,4) 91.45 53.51
mismatch(10,5) 91.60 53.78
mismatch(13,6) 90.98 50.11

Table 2: Multi-class music genre recognition. Classifi-
cation performance of the mismatch method

Kernel Error
Top-2
Error

F1 Top-2 F1

mismatch(5,1) 34.8 18.3 65.36 81.95
mismatch(5,2) 32.6 18.0 67.51 82.21
mismatch(6,3) 31.2 17.2 68.92 83.01
mismatch(7,4) 31.1 18.0 68.96 82.16
mismatch(9,3) 31.4 18.0 68.59 82.33
mismatch(9,4) 32.2 17.8 67.83 82.36
mismatch(10,3) 32.3 18.0 67.65 82.12
mismatch(10,4) 31.7 19.1 68.29 81.04

Results of mismatch kernel classification for the remote homology detection problem are shown in Table 1.
We observe that larger values of k and m perform better compared to typically used values of k=5-6, m=1-2. For
instance, (k=10,m=5)-mismatch kernel achieves significantly higher average ROC50 score of 53.78 compared
to ROC50 of 41.92 and 49.02 for the (k=5,m=1)- and (k=5,m=2)- mismatch kernels. The utility of such large
mismatch kernels was not possible to investigate prior to this study.

We also note that the results for per-family or per-superfamily based parameter selection suggest the need for
model selection and the use of multiple kernels, e.g., per-family kernel selection results in much higher ROC50
of 60.32 compared to 53.78 of the best single kernel.

For the music genre classification task (Table 2), parameter combinations with moderately long k and larger
values of m tend to perform better than kernels with small m. As can be seen from results, larger values of m
are important for achieving good classification accuracy and outperform setting with small values of m.

Conclusions. In this work we proposed a new systematic method that allows evaluation of inexact string
family kernels for long substrings k with large number of mismatches m. The method finds the intersection
set sizes by explicitly computing them for small alphabet size |Σ| and then generalizing this to arbitrary
large alphabets. We show that this enables one to explore a larger set of kernels which as we demonstrate
experimentally can further improve performance of the string kernels.
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