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ABSTRACT	
	
Most	regulatory	chromatin	interactions	are	mediated	by	various	transcription	factors	(TFs)	

and	involve	physically-interacting	elements	such	as	enhancers,	insulators,	or	promoters.		

To	map	these	elements	and	interactions	at	a	fine	scale,	we	developed	HIPPIE2	which	

analyzes	raw	reads	from	high-throughput	chromosome	conformation	(Hi-C)	experiments	

to	identify	precise	loci	of	physically-interacting	DNA	regions	(PIRs).		Unlike	standard	

genome	binning	approaches	(e.g.,	10K-1Mbp	bins),	HIPPIE2	dynamically	infers	the	physical	

locations	of	PIRs	using	the	distribution	of	restriction	sites	to	increase	analysis	precision	

and	resolution.	

We	applied	HIPPIE2	to	in	situ	Hi-C	datasets	across	6	human	cell	lines	(GM12878,	IMR90,	

K562,	HMEC,	HUVEC,	NHEK)	with	matched	ENCODE/Roadmap	functional	genomic	data.	

HIPPIE2	detected	1,042,738	distinct	PIRs,	with	high	resolution	(average	PIR	length	of	

1,006bps)	and	high	reproducibility	(92.3%	in	GM12878).	PIRs	are	enriched	for	epigenetic	

marks	(H3K27ac,	H3K4me1)	and	open	chromatin,	suggesting	active	regulatory	roles.		

HIPPIE2	identified	2.8M	significant	PIR–PIR	interactions,	27.2%	of	which	were	enriched	for	

TF	binding	sites.	50,608	interactions	were	enhancer–promoter	interactions	and	were	

enriched	for	33	TFs,	including	known	DNA	looping/long-range	mediators.	These	findings	

demonstrate	that	the	novel	dynamic	approach	of	HIPPIE2	

(https://bitbucket.com/wanglab-upenn/HIPPIE2)	enables	the	characterization	of	

chromatin	and	regulatory	interactions	with	high	resolution	and	reproducibility.		
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INTRODUCTION	

Enhancers	are	non-coding	DNA	elements	that	regulate	gene	expression	by	recruiting	

transcription	factors	which	in	turn	mediate	physical	interactions	with	the	promoters	of	

their	target	genes	to	increase	transcription	of	those	genes.	The	genome-wide	relationship	

between	enhancers	and	their	target	genes	depends	on	the	three-dimensional	DNA	looping	

associated	with	enhancer–promoter	interactions.	To	capture	genome-wide	chromatin	

interactions	in	Hi-C	(1),	physically-interacting	DNA	regions	and	their	binding	proteins	are	

cross-linked,	followed	by	restriction	enzyme	cleavage	and	proximity	ligation	of	the	

interacting	DNA	fragments	to	localize	and	capture	pairs	of	interacting	DNA	fragments.	

These	ligated	DNA	fragments	are	then	sequenced	to	identify	the	chromatin	interaction	map	

genome-wide.		Higher	resolution	in	localizing	interacting	DNA	fragments	has	been	achieved	

by	using	a	restriction	enzyme	with	more	frequent	sites	throughout	the	genome	(e.g.,	MboI,	

a	4-cutter	with	a	4	base-pair	motif,	instead	of	a	6-cutter	such	as	HindIII	or	NcoI)	and	by	

performing	the	DNA–DNA	proximity	ligation	in	intact	nuclei	to	generate	denser	Hi-C	

contact	matrices	(2).	

Previous	methods	for	analyzing	Hi-C	data	(1–14)	have	implemented	a	binning-

based	scheme	for	identifying	interacting	genomic	regions,	where	reads	are	aggregated	into	

equally-sized	bins	by	genome	coordinates	and	interacting	regions	are	identified	as	pairs	of	

bins	with	significant	enrichments	of	reads	using	statistical	models	accounting	for	biases	

(e.g.	negative	correlation	between	linear	genomic	distance,	number	of	reads	and	

mappability)	of	the	individual	bins.	While	binning	is	effective	at	delineating	large-scale	

chromatin	structure,	it	does	not	capture	specific	physically-interacting	DNA	regions.	The	

methods	of	Jin	et	al.	and	Hwang	et	al.	(9,	15,	16)	have	shown	that	it	is	possible	to	study	
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interactions	at	the	level	of	restriction	fragments	(i.e.	the	DNA	region	between	two	

consecutive	restriction	sites)	rather	than	bins	using	6-cutter	restriction.	Restriction	

fragment-based	binning	might	be	problematic	for	more	frequent	cutters	such	as	4-cutter	

(e.g.	MboI)	(2),	since	restriction	fragment	length	is	much	smaller	on	average	and	

interacting	DNA	sites	are	more	likely	to	span	more	than	one	restriction	fragment	thus	

highlighting	the	need	for	an	approach	to	accurately	infer	interacting	sites	that	span	

individual	restriction	fragments.		

To	address	these	limitations,	we	propose	HIPPIE2	(Figure	1a,b),	a	novel	

computational	method	that	uniquely	infers	the	locations	of	DNA	physically-interacting	

regions	(PIRs)	by	identifying	regions	enclosed	by	restriction	events	observed	on	both	sides	

of	DNA-protein	Hi-C	construct	(Figure	2;	Materials	and	Methods;	Supplementary	Figure	

S6)	using	multiple	sources	of	information	including	read-pileup	information,	patterns	of	

observed	restriction	events,	ligation	constraints,	and	read	strand	and	orientation	(Figure	

2A,	Supplementary	Figures	6,	7,	8;	Table	1).		

The	main	novelty	of	HIPPIE2	algorithm	is	the	development	of	an	approach	for	

interaction	detection	that	does	not	use	binned	data	or	fragment-based	mapping	in	contrast	

to	HIPPIE	and	most	of	the	existing	methods	(Table	1;	Figures	1,	2;	Supplementary	

Figures	6,	7,	8)	to	increase	analysis	resolution	and	precision.	

This	strategy	allows	HIPPIE2	to	identify	individual	interacting	DNA	elements	with	

better	specificity	than	binning.		HIPPIE2	uses	cell	type-matched	functional	genomics	data	to	

characterize	the	interacting	PIRs	into	functional	categories	including	enhancers	and	

promoters.	This	enables	the	high-resolution	identification	of	cell	type-specific	enhancer–

promoter	interactions,	and	we	show	a	corresponding	enrichment	in	PIR–PIR	interactions	
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of	transcription	factor	binding	sites	(TFBSs)	for	transcription	factors	known	to	be	involved	

in	enhancer–promoter	interactions.	HIPPIE2	is	open	source	

(https://bitbucket.com/wanglab-upenn/HIPPIE2)	and	freely	available	as	a	full	pipeline	to	

automate	analysis	from	raw	Hi-C	reads	to	identification	of	PIRs,	significant	PIR–PIR	

interactions,	functional	genomics	annotations	and	TF	analysis.	

	

MATERIALS	AND	METHODS		

Hi-C	data	acquisition	and	genome	mapping	

For	our	analysis,	we	used	the	Hi-C	datasets	for	GM12878	(primary	and	secondary	

replicates),	HMEC,	HUVEC,	IMR90,	K562,	and	NHEK	cell	lines	from	(2)	(GEO	database	

accession	number	GSE63525).	For	each	condition,	we	acquired	FASTQ	files	from	the	SRA	

files	available	on	GEO	corresponding	to	sequencing	libraries	within	each	condition.	Each	

library	was	mapped	separately	and	then	combined	for	downstream	analyses.	HIPPIE2	first	

aligns	the	paired-end	reads	to	the	human	genome	(GRCh37/hg19	assembly)	using	the	

STAR	aligner	(17)	allowing	only	unique	mapping	(full	parameters	available	in	HIPPIE2	

open	source	repository,	starMappingToBam.sh	script).	Each	of	the	single-end	reads	

from	a	read-pair	was	first	mapped	separately	and	then	re-associated	with	the	

corresponding	second	read	in	a	read-pair.	To	improve	mapping,	both	contiguously	mapped	

and	chimeric	reads	are	identified	and	paired.	Both	halves	of	a	chimeric	read	were	required	

to	map	uniquely	and	have	a	minimum	mapped	length	of	22	nt.	For	those	paired-end	reads	

with	a	chimeric	read	involved,	we	required	that	the	pairing	partner	of	the	chimeric	read	(a	
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single-end	read)	mapped	in	the	proximity	of	one	of	the	two	split	halves	spanned	by	the	

chimeric	read.		

Hi-C	read	normalization		

To	remove	potential	random	ligation	events,	including	un-cut,	self-ligated,	or	re-

ligated	read-pairs,	we	filtered	out	the	read-pairs	that	are	less	than	5,000	bps	apart	from	

each	other	as	suggested	in	(9,	18).	In	addition,	to	correct	for	all	possible	Hi-C	experimental	

biases	including	length	of	the	crosslinked	DNA	fragments,	restriction	site	accessibility,	or	

ligation	rate	of	the	restriction	enzyme	digested	fragments,	we	normalized	the	read	counts	

using	the	matrix	normalization	method	by	Knight	and	Ruiz	(19)	as	used	in	(2).	Additionally,	

to	avoid	any	biases	on	detecting	the	region	that	cannot	be	mapped	as	a	unique	genomic	

locus,	we	also	removed	from	the	analysis	restriction	sites	(RSs)	that	have	mappability	less	

than	0.8.	We	found	that	96%	of	the	RSs	have	mappability	higher	than	0.8,	i.e.	most	of	RSs	

had	high	mappability	given	a	relatively	long	read	length	(101	nts).	

Identification	of	physically-interacting	regions		

To	identify	physically-interacting	DNA	regions	(PIRs),	we	utilized	the	idea	that	each	

single-end	Hi-C	read	is	always	located	in	the	proximity	of	a	restriction	site	(RS)	that	serves	

as	both	the	restriction	enzyme	cleavage	and	ligation	site	in	the	Hi-C	protocol.	The	RSs	

correspond	to	sites	in	the	genomic	DNA	containing	sequence	that	can	be	recognized	by	the	

restriction	enzyme,	e.g.,	“GATC”	for	restriction	enzyme	MboI.	After	HIPPIE2	maps	reads,	it	

first	determines	corresponding	RSs	(cleavage/ligation	sites),	and	infers	the	relative	

position	(upstream	or	downstream	from	the	RSs)	for	the	DNA-interacting	region	(PIR).		

The	cleavage/ligation	sites	are	identifiable	from	the	mapping	information	of	Hi-C	

paired-end	reads	because	(1)	a	proper	DNA	ligation	forms	a	phosphodiester	bond	between	
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the	5'	phosphate	of	the	donor	DNA	and	the	3'	hydroxyl	of	the	acceptor	DNA,	and	(2)	the	

strand	orientation	pattern	reported	by	Illumina	sequencer	is	restricting	the	combinations	

of	upstream	or	downstream	cleavage/ligation	site	of	each	read-pairs.	The	workflow	of	

identifying	all	physically-interacting	regions	(PIRs)	and	PIR–PIR	interactions	along	the	

genome	includes	three	major	phases:	(I)	finding	ligation	junctions	for	read-pairs	(II)	

identifying	physically-interacting	regions,	and	(III)	finding	PIR–PIR	interactions.	Each	

phase	is	described	below.	

i. Identifying	ligation	junctions	for	read-pairs	

Each	mapped	read	has	two	candidate	(nearest	upstream	or	downstream)	restriction	

sites	(RSs)	to	be	assigned	as	the	restriction	enzyme	cut-and-ligation	site.	To	determine	the	

cut-and-ligation	site,	we	first	determine	which	type	of	interaction	has	happened	based	on	

the	mapped	strand	orientation	(Supplementary	Figures	S7,	S6a,	S8).		We	enumerated	all	

possible	ligations	types:	head/tail,	tail/head,	head/head,	or	tail/tail	ligations;	where	head	is	

the	end	with	smaller	genome	coordinate	and	tail	is	the	end	that	is	on	a	larger	coordinate	of	

the	chromosome.		

Because	(1)	the	ligation	of	two	DNA	fragments	is	formed	by	a	phosphodiester	bond	

between	a	3'	hydroxyl	and	a	5'	phosphate,	and	(2)	Illumina	paired-end	sequencing	reads	

are	generated	from	opposite	strands	from	the	sequenced	DNA	fragments,	we	can	narrow	

down	four	possible	ligation	types	for	each	paired-end	reads	to	two	scenarios	using	its	

strand	orientation.	For	the	read	strand	combinations	of	+/-	or	-/+	(different	strand),	the	

two	possible	ligation	types	are	either	head/tail	or	tail/head	ligations	(Supplementary	

Figure	S7	left).	Similarly,	for	the	read	strand	combinations	of	+/+	or	-/-	(same	strand),	the	

two	possible	ligation	types	are	either	head/head	or	tail/tail	ligations	(Supplementary	
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Figure	S7	right).	Next,	because	of	the	size-selection	step	in	the	Hi-C	protocol,	cut-and-

ligation	events	are	expected	to	generate	read	pairs	within	500bp	of	the	restriction	enzyme	

(MboI)	cutting	sites	due	to	the	size	selection,	to	resolve	the	two	possible	cases	of	head/tail	

or	tail/head	for	+/-	and	-/+,	we	calculated	the	two	possible	sums	of	the	two	distances	to	the	

nearest	cutter	sites,	and	ruled	out	the	ligation	event	that	made	the	sum	larger	than	300	

base	pair,	which	would	be	result	from	ligation	of	nonspecific	cleavage	product	(8)in	the	Hi-

C	experiment	(Supplementary	Figure	S8).	As	shown	in	Supplementary	Table	2,	the	

observed	fractions	of	strand	orientation	combinations	for	sequenced	Hi-C	read	pairs	are	

close	to	uniform	as	expected	from	the	stochastic	nature	of	the	proximity	ligation	reaction.		

ii. Identifying	physically-interacting	regions	(PIRs)	

With	the	identified	RSs	that	form	DNA-DNA	ligation	junctions,	we	further	identify	

physically-interacting	regions	(Algorithm	in	Supplementary	Figure	S6b).	First,	we	note	

the	sum	of	upstream	and	downstream	read	counts	(single-end	reads	from	read-pairs)	for	

each	RS	identified	in	the	previous	step.	To	group	restriction	events	corresponding	to	the	

same	interaction	(interacting	region),	we	clustered	RSs	separately	for	upstream	and	

downstream	read	counts	by	thresholds	of	the	maximum	gap	(dcluster)	and	the	minimum	read	

(rthreshold).	The	maximum	gap	is	defined	as	the	third	quantile	of	the	restriction	fragment	

distance	distribution,	and	the	minimum	read	requirement	is	defined	as	the	median	of	the	

normalized	read	distribution	for	each	chromosome.	Within	each	corresponding	cluster,	we	

identify	the	RSs	with	the	maximum	read	count	(i.e.	most	consistently	cut	site)	as	the	

candidate	flanking	ends	for	PIRs.	Finally,	we	matched	the	nearest	upstream	and	

downstream	candidate	flanking	ends	with	a	max-gap	algorithm	(in	this	study,	the	max-gap	

is	4000	bp),	and	report	the	PIRs	as	regions	that	are	enclosed	by	the	upstream	and	
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downstream	RSs	with	the	maximum	read	count	in	the	upstream	and	downstream	

restriction	clusters.		

iii. Finding	all	PIR–PIR	interactions	

We	find	the	interactions	between	PIRs	by	tracing	the	Hi-C	read-pairs	that	

participated	in	the	identifications	of	PIRs	(Algorithm	in	Supplementary	Figure	S6c).	For	

each	PIR	identified	in	the	previous	step,	IDs	of	single-end	reads	in	the	left	and	right	RS	

clusters	are	used	to	identify	PIRs	containing	mate	reads	(i.e.	other	single-end	reads	from	

read-pairs)	as	interacting	partners.	All	such	PIR–PIR	interactions	are	then	reported	along	

with	the	read	counts.	

Identifying	significant	PIR–PIR	interactions	genome-wide	

	 To	identify	significant	intra-chromosomal	PIR–PIR	interactions,	we	applied	the	Fit-

Hi-C	method	(11)	in	R	v3.2.3.	For	each	of	the	autosomal	chromosomes	(1–22)	and	

chromosome	X,	we	split	all	observed	PIR–PIR	interactions	into	2,000	distance	groups	

according	to	the	linear	distance	(in	nucleotides)	between	interacting	PIRs.	We	filtered	out	

the	PIR	pairs	that	are	less	than	5,000	nucleotides	apart.	For	each	distance	group,	we	

calculated	the	average	distance	and	the	average	normalized	read	counts	of	the	interacting	

PIRs.	With	the	2,000	aggregated	data	points,	we	fit	the	normalized	read	counts	by	the	

function	of	distance	using	smooth.spline	function	in	R.		After	the	first	spline	fitting,	we	

removed	the	outliers	as	described	in	(11)	and	fit	the	second	spline	function.	We	then	

reported	PIR–PIR	interactions	that	are	significant	after	Benjamini–Hochberg	correction	

(adjusted	P-value	<=	0.05).	
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Overlap	with	DNA	loops	from	Rao	et	al	

We	compared	PIR–PIR	interactions	in	our	study	with	the	set	of	DNA	loops	identified	

in	(2)	using	HiCCUPS.	We	downloaded	the	set	of	loops	and	Hi-C	loci	(DNA	regions	that	are	

participating	in	significant	DNA	loops)	and	filtered	to	include	only	those	with	the	highest	

10	kb	resolution	from	GEO	database	under	accession	number	GSE63525.	We	then	

overlapped	these	loop	anchors	and	interactions	with	HIPPIE2-identified	PIRs	and	PIR-PIR	

interactions	using	a	custom	script	(available	in	the	HIPPIE2	software	repository)	using	

awk,	bedtools	v2.25.0	(20),	and	Python	v2.7.9.		

Functional	and	genomic	annotation	data	

We	downloaded	the	cell	type-specific	ChIP-seq	peak	data	for	histone	modifications	

(H3K4me1,	H3K4me2,	H3K4me3,	H3K27ac,	and	H3K36me3),	DNase	I	hypersensitive	sites,	

and	transcription	factors	or	DNA-binding	proteins	(RNA	Polymerase	II,	p300,	and	CTCF)	

from	the	2011	freeze	of	the	UCSC	Genome	Browser	(21)	for	ENCODE	datasets	and	directly	

from	the	web	portal	(https://egg2.wustl.edu/roadmap/web_portal/index.html)	for	

Roadmap	datasets	including	combinatorial	epigenomic	states	from	ChromHMM	(22)	that	

we	used	to	identify	enhancer	states.	Functional	and	genomic	annotation	data	integrated	

into	HIPPIE2	is	summarized	in	Supplementary	Table	1.		

Enrichment	analysis	of	functional	genomic	overlaps	

To	estimate	the	extent	of	overlap	between	PIRs	and	regulatory	and	epigenetic	

marks	genome-wide,	we	calculated	the	sum	of	overlapped	nucleotides	between	PIRs	and	

each	signal	track	(regulatory/epigenetic	mark)	genome-wide	as	the	observed	value.	We	

sampled	(1000	times)	random	genomic	regions	from	the	genome	with	length	distribution	
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matched	with	the	length	of	PIRs.	We	calculated	the	average	of	1,000	sums	of	overlaps	

between	the	sampled	regions	and	each	of	the	signal	tracks.	We	then	reported	the	

percentage	differences	between	the	observed	value	and	the	averaged	value	from	the	

background	as	the	enrichment	of	the	PIRs	for	each	of	the	signal	tracks.	All	region	

intersections	were	performed	with	bedtools	v2.25.0	(20).	

Regulatory	and	genetic	annotation	of	the	interacting	PIRs	

HIPPIE2	annotates	PIRs	as	enhancers,	promoters,	exons,	introns,	or	intergenic	

elements.	To	do	this,	we	used	the	cell-type-matched	enhancer	annotations	described	above	

and	gene	models	downloaded	from	RefSeq	(23).	We	annotate	as	enhancers	the	promoter-

interacting	PIRs	that	overlapped	the	enhancer	(E)	or	weak	enhancer	(WE)	annotation	from	

the	genome	segmentation	track	(ChromHMM	(22)).	We	also	annotated	all	promoter-

interacting	PIRs	as	an	enhancer	if	they	overlapped	an	open	chromatin	region	with	

H3K4me1	or	H3K27ac	ChIP-seq	peak,	while	not	overlapping	H3K4me3	and	H3K27me3	

peaks.	The	rest	of	the	PIRs	were	annotated	as	promoters,	exons,	introns,	and	intergenic	

elements	using	RefSeq	gene	models	(GRCh37/hg19	assembly).	The	promoters	were	

defined	as	500	bp-long	regions	upstream	of	the	RefSeq	TSS	of	protein-coding	genes.	We	

then	annotated	PIRs	as	promoter,	exonic,	intronic,	or	intergenic	elements	(in	this	

prioritized	order)	based	on	their	overlap	with	RefSeq	gene	models.	To	calculate	the	

background	expectations	of	interactions	between	annotations	a	and	b,	we	used	the	product	

of	the	proportion	of	individual	PIRs	in	annotation	a	and	the	proportion	in	annotation	b.		

Transcription	factor	binding	analysis	of	PIR–PIR	interactions	

To	identify	PIRs	with	evidence	of	transcription	factor	binding,	we	used	Factorbook	

data	(24)	that	integrates	ENCODE	ChIP-seq	experimental	data	with	computational	
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prediction	of	transcriptions	factor	binding	sites	(TFBSs)	to	comprehensively	survey	

protein–DNA	binding	genome-wide.	The	Factorbook	data	were	obtained	from	UCSC	hg19	

database	(factorbookMotifPos	table,	release	4).	The	Factorbook	data	contains	161	factors	

and	the	motifs	were	discovered	from	91	cell	types.	We	focused	on	133	known	DNA-binding	

transcription	factors.	We	filtered	out	the	TFs	with	less	than	10	binding	sites	within	PIRs	

genome-wide.	For	each	PIR,	we	reported	all	TFs	that	have	at	least	one	binding	site	within	

that	PIR.	We	reported	enrichment	for	each	of	the	surveyed	binding	motifs	in	PIR–PIR	

interactions.	To	do	this,	we	categorized	PIR–PIR	interactions	according	to	the	classes	of	

interacting	PIR	elements	(enhancers,	promoters,	exons,	introns,	or	intergenic	elements).	

We	estimated	binding-motif	enrichment	as	observed/expected	frequency	odds	ratio.	We	

computed	the	expected	probability	as	the	probability	of	the	first	PIR	class	(Ci)	having	a	

motif	Mk	times	the	probability	of	the	second	PIR	class	(Cj)	having	another	motif	(Ml)	as	

follows:	

Prob(𝑀',𝑀)observed	in	𝐶2, 𝐶2) = 	P(𝑀'|𝐶2) × P(𝑀)|𝐶7)	

=
P(𝑀', 𝐶2)
P(𝐶2)

×
P(𝑀), 𝐶7)
P(𝐶7)

	

=
#(𝐶2	containing	𝑀'	)

#𝐶2
×
#(𝐶7	containing	𝑀)	)

#𝐶7
	

We	performed	a	binomial	distribution	test	to	report	the	significance	of	observed	binding	

motifs	in	each	type	of	PIR–PIR	interaction.	To	compare	against	the	BioGRID	database	(25,	

26),	we	downloaded	the	list	of	TF–TF	interactions	across	cell	lines	and	searched	for	

transcription	factor	matches	by	name	and	by	alias.		
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RESULTS	

HIPPIE2 identifies fine-scale physically-interacting DNA regions (PIRs) 

 The	HIPPIE2	method	presented	in	this	manuscript	further	develops	our	HIPPIE	

method	(15):	HIPPIE2	applies	a	newer	read	mapping	protocol	to	resolve	chimeric	reads,	

uses	an	interaction	calling	algorithm,	and	introduces	novel	algorithms	to	dynamically	

identify	fine-scale	interacting	regions	(Figures	1,2;	Supplementary	Figures	6,	7,	8)	

instead	of	binning	reads	into	full	restriction	fragments	used	in	HIPPIE	(15).	To	illustrate	

our	method,	we	used	HIPPIE2	to	analyze	high	read	depth	Hi-C	sequencing	datasets	(2)	

using	the	4bp-cutter	MboI	across	six	human	cell	lines	that	had	matching	functional	

genomics	data	from	ENCODE	or	Roadmap	(5,	27)	including	K562,	HMEC,	HUVEC,	IMR90,	

NHEK,	and	GM12878,	with	two	replicates	for	GM12878	(Figure	1a-b).	For	each	cell	line,	

we	mapped	the	raw	Hi-C	read-pairs	using	STAR	(17)	(Materials	and	Methods),	uniquely	

mapping	between	73.6%	and	85.4%	of	Hi-C	reads	across	the	51	separate	libraries	for	these	

cell	lines	(Figure	1c,	Supplementary	Figure	S1).	Following	(2),	we	normalized	the	read	

counts	using	matrix	normalization	by	Knight	and	Ruiz	(19)	(Materials	and	Methods).	

Using	normalized	counts,	HIPPIE2	identifies	physically-interacting	regions	(PIRs)	as	the	

DNA	regions	flanked	on	both	sides	by	restriction	sites	(RSs)	that	were	observed	to	be	

consistently	cleaved/ligated	in	a	given	Hi-C	sequencing	library	(Figure	2d-f),	using	

information	from	the	Hi-C	sequencing	read-out	including	the	read	mapping	coordinates,	

distances	from	reads	to	their	nearest	restriction	sites,	DNA	ligation	constraints	and	strand	

orientations	(+/-)	of	the	mapped	read-pairs,	and	relative	locations	of	DNA	interaction	sites	

with	respect	to	mapped	reads	(Materials	and	Methods,	Figure	2).	This	dynamic	PIR-



HIPPIE2: identifying physically-interacting regions 

based	approach	enables	finer-scale	identification	of	specific	interacting	DNA	regions	

compared	to	the	genomic	binning-based	approaches	(Table	1).		
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Figure	1.	Description	of	HIPPIE2	pipeline	and	mapping	statistics.	A)	Detailed	

processing	pipeline	of	HIPPIE2.	B)	Overview	of	HIPPIE2	algorithm.	C)	Mapping	statistics	

across	cell	lines.	

	

Figure	2.	Hi-C	model	and	identification	of	DNA	physically-interacting	region.	A)	

Interacting	DNA	regions	are	cut	by	the	MboI	restriction	enzyme.	B)	Cut	fragments	are	

ligated	together	and	size-selected.	C)	Paired	end-sequencing	is	performed	on	the	ligated	

fragments.	D)	Read	pileups	around	the	cleavage	sites	inform	the	identification	of	the	

physically-interacting	region.	E)	Genomic	view	of	read	pileups,	restriction	sites,	and	

interacting	regions	(PIRs)	locations.	Upstream	(ubl)	and	downstream	(dbl)	boundary	

locations	for	PIRs	correspond	to	most	consistently	cut	(as	evidenced	by	the	number	of	

reads)	restriction/ligation	sites.	F)	Distribution	of	restriction	events	(REs)	around	

physically-interacting	DNA	regions	(PIRs)	identified	by	HIPPIE2.		Shown	is	the	distribution	

of	the	restriction	events	for	PIRs	in	GM12878	cell	line.	
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In	total,	HIPPIE2	called	between	1,584,000	and	1,886,000	PIRs	from	chromosomes	

1-22	and	X	across	cell	lines	(Figure	3a).	These	PIRs	had	an	average	length	of	1,006	base	

pairs	consistent	across	cell	lines	(Supplementary	Figure	S2a),	which	corresponds	to	2.4	

average	restriction	fragment	length.	Across	libraries,	these	identified	PIRs	covered	53.2%-

59.3%	of	the	genome	(Supplementary	Figure	S2b).	HIPPIE2	annotated	these	PIRs	with	

gene	annotations	(28)	including	promoters,	exons,	and	introns,	which	found	that	a	majority	

of	PIRs	in	all	cell	types	were	intergenic	and	the	next	largest	class	of	overlaps	were	in	mRNA	

introns,	supporting	the	regulatory	roles	of	these	PIRs	(Figure	3b).	Comparing	overlaps	

between	HIPPIE2-called	PIRs	and	DNase-seq-based	regions	of	open	chromatin	in	each	of	

cell	types	from	Roadmap/ENCODE,	we	found	that	73.84-79.04%	of	open	chromatin	regions	

overlapped	with	at	least	one PIR	across	cell	types,	with	an	average	of	69.97%	of	the	open	

chromatin	regions	covered	by	PIRs	(Figure	3c).	PIR	identification	by	HIPPIE2	is	highly	

robust,	with	92.3%	PIRs	(1,649,417)	found	in	both	of	the	GM12878	replicates.	
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Figure	3.	PIR	characteristics.	A)	Total	PIRs	identified	across	cell	lines.	B)	Localization	

patterns	of	PIRs	in	various	genomic	annotations.	C)	Overlap	patterns	of	PIRs	with	cell	type-

matched	open	chromatin	annotations.	For	each	cell	type,	cell-specific	open	chromatin	

regions	were	overlapped	with	HIPPIE2-called	PIRs.		Shown	are	1)	proportion	of	open	

chromatin	regions	overlapping	with	PIRs	in	each	cell	type	(purple	bars);	and	2)	fraction	of	

individual	open	chromatin	regions	covered	by	PIRs	(distribution	in	yellow).	 	
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HIPPIE2 detects fine-scale chromatin interactions 	

To	identify	which	PIR–PIR	pairs	are	significantly	interacting,	HIPPIE2	applies	the	Fit-Hi-

C	algorithm	(11)	using	the	normalized	read	counts	and	linear	genomic	distance	between	

pairs	of	potentially	interacting	PIRs	(Materials	and	Methods).	Across	cell	lines,	HIPPIE2	

identified	between	42,500	and	1,194,010	intra-chromosomal	significant	PIR–PIR	

interactions	(>5	kb	apart,	adjusted	P	value	≤	0.05,	Figure	4a).	To	investigate	robustness	of	

interaction	calling,	we	compared	the	two	GM12878	replicates.	Consistent	with	the	lower	

sequencing	depth	of	the	replicate	library	(2.5	billion	vs	3	billion	reads),	we	identified	fewer	

significant	interactions	and	PIRs	involved	in	significant	interactions	in	the	replicate	library	

(Figure	4a),	but	found	a	significant	overlap	between	PIRs	and	PIR–PIR	interactions	

(Figure	4b-c),	with	majority	(66.2%;	274,445/414,343;	Jaccard	index=0.3696)	of	PIRs	and	

31.1%	(196,343/631,610;	Jaccard	index=0.1205)	of	PIR–PIR	interactions	in	the	replicate	

found	in	the	primary	library.	This	level	of	replication	is	consistent	with	prior	studies	of	Hi-C	

replication	(14),	which	found	similar	levels	of	replicated	interactions	across	Hi-C	datasets	

(e.g.,	Jaccard	index	<	0.1	on	GM12878	Rao	data	for	all	tested	methods	in	(14)).		

To	interrogate	the	relationship	between	sequencing	depth	and	interaction	replication,	

we	binned	the	interactions	from	the	GM12878	primary	library	into	deciles	by	read	

coverage	(analogous	to	down-sampling)	and	compared	their	replication	rates.	We	found	a	

striking	positive	correlation	between	read	coverage	and	replication	rate	(R2	=	0.9398,	

Figure	4d),	suggesting	that	reproducibility	between	replicates	may	be	increased	with	a	

higher	sequencing	depth.	
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Figure	4.	Characteristics	of	significant	PIR–PIR	interaction	identification	and	

replication.	A)	Counts	of	PIRs	involved	in	significant	interactions	(left)	and	number	of	

significant	PIR–PIR	interactions	(right)	across	cell	lines.	B)	Number	of	PIRs	involved	in	
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significant	interactions	replicated	between	the	primary	and	secondary	GM12878	libraries.	

C)	Number	of	PIR–PIR	interactions	replicated	between	the	primary	and	secondary	

GM12878	libraries.	D)	Plot	of	replication	rate	against	PIR	read	coverage	quantiles.	

Correlation	is	the	Pearson	correlation.	E)	Replication	of	Rao	data	by	HIPPIE2.	Interacting	

bins	refer	to	10kb	Rao	bins	involved	in	significant	interactions	and	bin–bin	interactions	are	

significant	interactions.	Across	cell	lines,	an	average	of	60.2%	of	HiCCUPS	loop	anchors	and	

16.6%	of	loops	are	reproduced	by	HIPPIE2,	while	for	most	deeply	sequenced	GM12878	

library	91.4%	of	loop	anchors	and	37.4%	of	loops	were	reproduced	by	HIPPIE2	(see	also	

main	text	for	other	comparisons).	

	

Comparison	with	uniform	binning-based	approach	

HIPPIE2	provides	a	more	accurate	approach	for	identifying	fine-scale	interacting	sites	by	

design:	previous	methods	that	use	a	binning-based	approach	maximize	their	statistical	

power	to	detect	interactions,	with	a	tradeoff	of	accuracy	for	identifying	the	interacting	site	

(Table	1).	Due	to	the	fundamentally	different	natures	of	the	binning-based	algorithms	

compared	to	HIPPIE2	and	the	lack	of	a	‘ground	truth’	dataset	of	expected	Hi-C	interactions,	

it	is	challenging	to	directly	compare	the	HIPPIE2	interactions	with	these	previous	methods.	

However,	to	explore	the	differences	between	the	binning	approaches	and	HIPPIE2	PIR-

based	approach,	we	compare	the	HIPPIE2	results	with	the	results	from	(2)	obtained	using	

HiCCUPS	method	(we	note	that	a	detailed	comparison	among	Hi-C	methods	has	been	

reported	in	the	recent	study	by	Forcato	et	al	(14)).				
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Table	1:	Comparison	of	HIPPIE2	with	other	Hi-C	methodologies	

Method	 Input	 Resolution	 Output	 Downstream	
Analyses	

HIPPIE2	 Raw	reads	 Dynamic,	
restriction	
event-based	
(1kb	average)	

High-resolution	
restriction	site-

based	
physically-
interacting	

regions	(PIRs),	
PIR–PIR	

interactions	

Genic	and	cell	type-
specific	epigenetic	
annotation	of	
interactions,	

identification	of	
mediating	

transcription	factors,	
identification	of	

enhancer–promoter	
interactions	

HIPPIE	(15)	 Raw	reads	 Restriction	
fragment-based	
(4kb	average)	

Full	restriction	
fragment-based	
physically-
interacting	
regions	

Annotated	
interactions,	

enhancer–promoter	
interactions	

HiCCUPS	(2,	12)	 Raw	reads	 Fixed	bins		 loops	(bin-bin	
interactions)	

NA	

	

We	compared	our	HIPPIE2-identified	PIRs	with	the	HiCCUPS-identified	loop	

anchors	and	interactions	(bin	size=10K)	(2).	Across	cell	lines,	the	set	of	PIRs	identified	by	

HIPPIE2	is	consistent	with	and	is	complementary	to	the	previously	identified	set	of	

interacting	genomic	regions:	we	found	that	HIPPIE2	PIRs	covered	an	average	of	60.2%	of	

HiCCUPS-identified	loop	anchors	across	cell	lines,	with	the	highest	proportion	(91.4%)	in	

the	primary,	most	deeply	sequenced	GM12878	library	(Materials	and	Methods,	Figure	

4e).	The	HMEC,	HUVEC,	and	NHEK	cell	lines	were	the	only	ones	with	a	proportion	less	than	

50%,	corresponding	to	their	shallower	sequencing	depth	(Pearson	R2	=	0.862	between	

sequencing	depth	and	replication	proportion).		
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Next	considering	HIPPIE2	PIR–PIR	interactions	and	HiCCUPS	loops,	we	found	that	37.4%	of	

HiCCUPS	loops	in	GM12878	primary	library,	with	an	average	of	16.6%	of	HiCCUPS	loops	

across	cell	lines,	were	supported	by	significant	HIPPIE2	PIR–PIR	interactions	across	cell	

lines	(Figure	4e).	When	we	matched	the	bin	size	(10k)	used	in	HiCCUPS	analysis	by	

expanding	HIPPIE2	PIR–PIR	interactions	so	that	each	PIR	covered	at	least	10kb,	we	found	

that	the	majority	(55.8%)	of	HiCCUPS	loops	replicated	in	the	primary	GM12878	library	

(highest	sequencing	depth)	and	the	average	proportion	of	replicated	HiCCUPS	loops	across	

cell	lines	increased	to	28.88%	from	16.6%,	with	an	average	of	68%	of	HiCCUPS	loop	

anchors	replicated	(Supplementary	Figure	S3c).	Interestingly,	each	PIR	overlapping	a	

HiCCUPS-identified	loop	anchor	was	involved	in	an	average	of	between	5.62	and	21.52	

significant	PIR–PIR	interactions	across	cell	lines	compared	to	a	single	interaction	(loop)	

reported	by	HiCCUPS,	corresponding	to	an	average	fold	enrichment	of	10.07	more	

interactions	identified	by	HIPPIE2	than	by	the	HiCCUPS	binning/loop	detection	approach.	

Overall,	HIPPIE2	identified	about	two	orders	of	magnitude	more	interactions	than	the	bin-

based	approach	across	all	cell	lines	(2,794,123	vs	27,827).	This	illustrates	that	HIPPIE2	

identifies	more,	finer-scale	regulatory	interactions	than	the	bin-based	approach	to	

maximize	power	to	detect	large-scale	genomic	architecture	rather	than	a	multiplicity	of	

fine-scale	regulatory	interactions.	For	example,	in	the	1	megabase	locus	on	chr14	

investigated	in	Rao	et	al	(2)	(chr14:94,000,000-95,000,000),	there	were	1,082	HIPPIE2	

significant	PIR–PIR	interactions	within	4	bin-bin	interactions	that	were	called	in	the	

original	study	(Supplementary	Figure	S4).		We	have	also	compared	HIPPIE2	with	the	

recent	Binless	method	proposed	by	Spill	et	al		(29)	(Supplementary	Figure	S9)	with	

86/102	(84%)	HIPPIE2-called	PIRs	overlapping	with	Binless	loci.	As	can	be	seen	from	the	
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figure,	while	HIPPIE2	doesn't	recover	all	the	interacting	sites	or	indeed	the	smaller	

interactions	from	the	Binless	method,	HIPPIE2	recovering	a	lot	more	longer-range	

interactions	especially	closer	to	the	

HCF	gene,	suggesting	that	HIPPIE2	and	Binless	are	complementary	methods	where	Binless	

may	recover	shorter	range	interactions	while	HIPPIE2	may	more	reliably	identify	more	

long	range	interactions	(indeed	by	design	with	the	5kb	threshold;	Materials	and	

Methods).	

When	comparing	power	to	recall	validated	interactions	from	5C	data	(Supplementary	

Tables	6,	7),	using	the	benchmark	results	from	(14)	on	the	same	GM12978	Rao	et	al	data	

(as	reported	in	Figure	2	in	(14)),	HIPPIE2	recovers	more	interactions	(99	5C-based	loops)	

than	most	of	other	benchmarked	methods	(14)	including	HiCCUPS,	which	recover	an	

average	of	11.33	5C-based	based	loops	(14).		

	

HIPPIE2	PIR–PIR	interactions	are	enriched	in	regulatory	genomic	

features	

To	evaluate	how	PIRs	co-locate	with	binding	of	factors	known	to	be	involved	in	

genome	architecture	and	transcriptional	mechanisms,	we	overlapped	HIPPIE2-identified	

PIRs	from	the	primary	GM12878	library,	the	most	deeply	sequenced	library,	with	ENCODE	

ChIP-seq	binding	sites	for	CTCF,	PolII,	and	P300	(Table	2)	from	the	same	cell	type	(27).	We	

found	that	HIPPIE2	PIRs	overlapped	92%	(41,134	out	of	44,597)	CTCF	sites,	consistent	

with	studies	that	suggests	CTCF	has	a	role	in	mediating	chromatin	interactions	(30).	

Similarly,	for	PolII	and	P300,	associated	with	transcriptional	and	enhancer	activity	(31),	we	
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found	high	overlaps	at	96.5%	(9,678	out	of	10,026)	and	96.3%	(16,509	out	of	17,150	sites),	

respectively.	We	randomly	sampled	1,000	sets	of	background	genomic	regions	matched	to	

the	distribution	of	PIR	lengths	and	calculated	percent	enrichment	of	the	GM12878	PIRs	

relative	to	these	background	sites	(Materials	and	Methods;	Table	2).	We	found	that	the	

GM12878	PIRs	had	increases	of	20-23%	base	pairs	of	overlap	over	background	and	

overlapped	18-19%	more	ChIP-seq	sites,	suggesting	that	the	GM12878	PIRs	are	involved	in	

genomic	architecture	and	regulatory	function.		

Table	2:	Enrichment	of	all	GM12878	PIRs	in	transcriptional	and	architectural	protein	

binding	sites	relative	to	randomly	sampled	background	genomic	regions	

ChIP-

seq	

dataset	

#	of	base	

pairs	

overlapped	

by	PIRs	

Number	of	

ChIP-seq	

peaks	

overlapped	

by	PIRs	

%	increase	in	#	

of	base	pairs	

overlapped	by	

PIRs	

%	increase	in	#	of	

ChIP-seq	peaks	

overlapped	by	

PIRs	

Empirical	

P-value	

CTCF	 10,214,990	 41,134	 20.69	 18.51	 <0.001	

P300	 4,662,562	 16,509	 23.99	 19.12	 <0.001	

PolII	 2,758,845	 9,678	 23.07	 18.21	 <0.001	

 
To	characterize	the	function	of	PIRs	involved	in	significant	interactions,	HIPPIE2	

automatically	annotates	PIRs	with	DNase-based	open	chromatin	regions,	enhancers	

defined	by	combinatorial	epigenomic	status	using	ChromHMM	(22),	the	enhancer-

associated	histone	modifications	H3K4me1	and	H3K27ac	(32,	33),	the	inactive	or	poised	

enhancer	histone	modification	H3K27me3	(34),	and	the	promoter-associated	histone	

modification	H3K4me3	(35),	all	in	the	matching	cell	types	from	ENCODE	or	Roadmap	(5,	
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27)	(Figure	5a,b;	Supplementary	Tables	4,	5).	Between	18.35%	and	42.26%	of	PIRs	

involved	in	significant	PIR–PIR	interactions	overlapped	open	chromatin	sites	across	cell	

lines,	with	the	lowest	proportions	in	the	shallowest	sequencing	libraries,	while	the	other	

annotations	encompassed	between	7.4%	(H3K4me3)	and	17.2%	(Roadmap	ChromHMM	

enhancers)	of	PIRs	on	average	across	cell	lines.	By	comparing	against	samples	of	length-

matched	background	intervals	(Materials	and	Methods),	we	found	that	the	PIRs	involved	

in	significant	interactions	were	enriched	for	overlaps	with	all	of	the	active	epigenomic	

marks	in	every	cell	line	except	for	NHEK,	where	PIRs	were	depleted	of	overlaps	with	all	

annotations	except	H3K4me3	(Figure	5b).	The	repressive	mark	H3K27me3	had	the	

smallest	average	enrichment	(40.75%)	across	cell	lines,	suggesting	that	significant	PIR	

interactions	are	associated	with	active	regulatory	elements	(2,	16),	which	showed	much	

stronger	enrichments.			

We	have	also	assessed	degree	of	overlap	between	HIPPIE2-called	PIRs	and	open	

chromatin	regions	in	cell-type	specific	manner	using	Jaccard	indexes	and	odds	ratios	

(Supplementary	Table	4).	Across	cell	lines,	we	observe	an	average	enrichment	odds	ratio	

of	2.1	indicating	high	degree	of	overlap	between	PIRs	and	open	chromatin	regions.	

Similarly,	we	have	also	assessed	an	overlap	between	PIRs	involved	in	significant	

interactions	(interactor	PIRs)	and	cell-type	specific	functional	genomic	annotations	

(Supplementary	Table	5).	Across	cell	lines,	we	observed	significant	overlaps	with	all	

functional	genomic	features	compared,	with	the	strongest	enrichments	in	enhancer	and	

promoter	associated	histone	modifications	including	H3K27ac	and	H3K4me1/3	

(Supplementary	Table	5).	
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Figure	5.	Regulatory	annotation	of	PIR–PIR	interactions.	A)	Proportion	of	PIRs	

involved	in	significant	interactions	(interactor	PIRs)	overlapping	cell	type-matched	

functional	annotations.	B)	Enrichment	of	interactor	PIRs	relative	to	background	
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expectation	calculated	by	sampling.	C)	Ratio	of	number	of	observed	annotation-annotation	

PIR–PIR	interactions	relative	to	background	expectations.	

	

HIPPIE2	PIR–PIR	interactions	are	enriched	for	enhancer–promoter	

mechanisms	

HIPPIE2	identifies	specific	enhancer–promoter	interactions	by	classifying	PIRs	as	

enhancers	if	they	overlap	1)	an	open	chromatin	region	and	a	shared	H3K4me1/H3K27ac	

peak	and/or	2)	a	ChromHMM	(22)	epigenomic	enhancer	(Materials	and	Methods).	For	

enhancer	elements,	HIPPIE2	further	requires	that	the	putative	enhancer	PIR	display	at	

least	one	significant	interaction	with	a	promoter-overlapping	PIR	and	does	not	overlap	any	

H3K4me3	(active	promoter	mark)	or	H3K27me3	(repressive	mark)	peaks	in	the	matching	

tissue.	We	found	that	the	percentage	of	regulatory	interactions	(enhancer–promoter,	

enhancer–enhancer,	or	promoter–promoter	pairs)	accounted	for	an	average	of	2.36%	

(ranging	from	0.36%	-	3.78%)	of	significant	interactions	across	cell	lines,	a	significant	

enrichment	compared	to	the	background	expectation	of	an	average	of	0.076%	(ranging	

from	0.0049%	-	0.2%)	of	interactions.	For	enhancer–promoter	interactions	specifically,	we	

detected	an	average	of	51.95x	enrichment	over	the	background	expectation	(ranging	from	

26.79x	-	86.47x),	and	these	were	the	most	enriched	interactions	in	all	cell	types,	suggesting	

that	the	interactions	identified	by	HIPPIE2	are	indeed	reflective	of	transcriptional	

regulatory	processes	(Materials	and	Methods;	Figure	5c).		
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HIPPIE2	recovers	a	repertoire	of	known	regulatory	TFs	mediating	

chromatin	interactions	

In	order	to	elucidate	the	mechanisms	underlying	the	observed	enhancer–promoter	

interactions,	HIPPIE2	annotates	interacting	PIRs	with	transcription	factor	binding	sites	

(TFBS)	from	the	FactorBook	database	which	contains	TFBSs	for	133	DNA-binding	proteins	

identified	by	ChIP-seq	experiments	(24).	Combined	with	our	HIPPIE2-identified	fine-scale	

PIR	annotations,	this	approach	enables	HIPPIE2	to	identify	the	transcription	factors	

mediating	enhancer–promoter	interactions	with	high	resolution.	We	found	that	an	average	

of	14.11%	of	PIRs	involved	in	all	significant	interactions	had	overlaps	with	known	TFBS	

across	cell	lines,	while	an	average	of	39.2%	of	HIPPIE2-identified	enhancer–promoter	

interactions	across	cell	lines	had	an	evidence	of	known	TF	binding	(Supplementary	

Figure	S5a).	

To	determine	whether	enhancer–promoter	interactions	were	enriched	in	

transcription	factor	binding	sites,	we	quantified	the	observed/expected	ratio	for	binding	

motif	enrichment	and	used	a	binomial	model	to	identify	significant	enrichments	of	

transcription	factors	involved	in	enhancer–promoter	interactions	(Materials	and	

Methods).	We	found	significant	enrichments	for	31	TFs	in	enhancers	and	29	in	promoters	

for	a	total	of	33	unique	transcription	factors	across	all	cell	lines	except	for	HUVEC	and	

NHEK	(Supplementary	Figure	S5b,	Supplementary	Table	3).	To	test	whether	these	

putative	HIPPIE2-identifed	TF–TF	interactions	correspond	to	known	protein-protein	

interactions	(PPI),	we	compared	HIPPIE2	TF-TF	interactions	to	the	BioGRID	database	(25,	

26).	To	do	this,	for	each	cell	line,	we	identified	all	the	TFs	involved	in	significant	enhancer–

promoter	interactions,	quantified	all	their	interactions	in	BioGRID,	and	determined	the	
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proportion	of	BioGRID	interactions	involving	these	TFs	that	were	recapitulated	by	

HIPPIE2.	We	found	that	HIPPIE2-identified	TF–TF	interactions	in	GM12878	recapitulated	

most	(78%)	of	known	physical	TF–TF	interactions	reported	in	BioGRID,	with	an	average	of	

57.5%	of	known	physical	interactions	between	TFs	in	BioGRID	(31%-78%)	recovered	

across	cell	lines.	These	proportions	were	strongly	correlated	with	the	sequencing	depth	of	

each	cell	line	(Pearson	R2	=	0.88),	suggesting	that	increased	read	depth	may	recover	more	

BioGRID	interactions.			

We	then	stratified	these	TFs	by	how	many	different	cell	lines	they	were	enriched	in	

to	identify	regulatory	mechanisms	common	across	cellular	contexts	(Supplementary	

Figure	S5c).	This	identified	several	TFs	enriched	in	several	cell	lines	that	were	consistent	

with	known	enhancer	and	chromatin	architecture	biology,	including	SP1,	AP1,	MYC,	CEBPB,	

YY1,	and	CTCF.	SP1	has	been	shown	to	function	as	a	link	of	both	side	of	DNA,	and	is	able	to	

form	a	tetrameric	structure	and	assemble	multiple	tetramers	that	facilitate	a	DNA	looping	

structure	(36).	AP1	is	a	transcription	factor	involved	in	cellular	proliferation,	

transformation,	and	apoptosis	that	forms	heterodimers	with	the	Jun	oncogene	(37).	MYC	is	

an	oncogene	involved	in	several	different	cancer	types	and	exerts	widespread	

transcriptional	regulatory	effects	(38).	CEBPB	is	another	major	enhancer-binding	protein	

family	which	can	aid	the	transition	of	enhancer	elements	from	closed	chromatin	to	a	

primed	or	poised	state	and	is	involved	in	immune	and	inflammatory	responses	(39).	CTCF	

is	a	major	architectural	protein	with	a	role	in	defining	megabase-scale	topologically-

associated	domains	as	well	as	regulating	smaller-scale	enhancer–promoter	interactions	

such	as	those	observed	here	(30,	40).	YY1	is	another	major	architectural	protein	that	
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cooperates	with	CTCF	to	mediate	looping	interactions	involved	in	developmental	processes	

and	enhancer–promoter	interactions	(41,	42).		

	

DISCUSSION	

In	this	paper	we	introduce	a	novel	method	for	Hi-C	data	analysis,	HIPPIE2,	

which	dynamically	discovers	fine-scale	physically-interacting	regions	(PIRs)	of	the	

genome	with	increased	resolution	compared	to	previous	methods,	detects	fine-scale	

chromatin	interactions,	and	provides	functional	and	mechanistic	characterization	of	

these	interactions.	HIPPIE2	uses	the	pattern	of	restriction	events	as	evidenced	by	

sequencing	read	pileups	relative	to	restriction	sites	to	fine-map	interacting	DNA	

regions.	Our	results	suggest	that	HIPPIE2	detects	more	specific,	finer-scale	

interactions	at	the	gene-regulatory	level	of	chromatin	architecture	(average	PIR	

length	of	1,006bps),	offering	a	complementary	approach	to	the	binning-based	

procedures	(2,	11,	12,	14,	43,	44).		

Our	method	also	complements	restriction	fragment-based	methods	(9,	15)	

for	mapping	Hi-C	data	as	an	alternative	approach	for	analyzing	data	from	more	

frequent	cutters	with	much	smaller	fragment	length	and	interaction	regions	

spanning	more	than	one	fragment.	While	fragment-based	mapping	methods	were	

successfully	used	with	data	from	low	frequency	cutters	(relatively	large	fragment	

size)	where	interactions	were	likely	to	be	contained	within	the	fragments	

themselves,	HIPPIE2	addresses	the	main	difficulty	of	using	the	data	from	more-
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frequent	cutters	with	much	smaller	restriction	fragment	sizes	when	interactions	are	

likely	to	span	more	than	one	restriction	fragment	necessitating	accurate	inference	of	

interacting	sites	/	boundaries	such	as	those	provided	by	the	HIPPIE2	algorithm.	

HIPPIE2	algorithm,	differently	from	restriction	fragment-based	or	fixed-size	

genomic	bin-based	methods,	introduces	a	dynamic	algorithm	for	identifying	precise	

location	of	interacting	sites	using	multiple	source	of	information	including	read-

pileup	information,	patterns	of	observed	restriction	events,	ligation	constraints,	and	

read	strand	and	orientation.		

While	an	original	(2)	normalization	procedure	(Knight-Ruiz	method)	was	

used	for	all	Hi-C	datasets	in	this	study,	the	HIPPIE2	approach	is	designed	to	work	

independent	of	the	normalization	procedure	(i.e.	downstream	of	the	data	

normalization	steps),	and	as	such	our	method	can	be	easily	paired	with	an	

appropriate	normalization	method	that	captures	specific	biases	and	characteristics	

of	a	particular	experimental	protocol	or	with	an	improved	normalization	procedure	

for	high-resolution,	non-binned	data	which	is	an	ongoing	effort	(29,	45).	

Additionally,	HIPPIE2	can	be	paired	with	other	methods	for	calling	significant	

interactions	such	as	(46).	

With	our	approach	designed	to	work	at	the	inherent	resolution	of	the	data	(as	

determined	by	restriction	enzyme	cutting	frequency	and	restriction	efficiency),	our	

method	will	prove	useful	in	the	analysis	of	chromosome	conformation	capture	

experiments	with	further	increased	sequencing	depth	or	improved	restriction	
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protocols.	Another	natural	application	in	which	our	approach	will	prove	useful	is	

the	analysis	of	the	data	generated	by	the	assays	targeting	particular	types	of	

interactions,	such	as	Capture-C	and	Capture	Hi-C	(43,	47)	that	capture	promoter-

centric	interactions.	

Furthermore,	the	fine-scale	resolution	of	our	method	for	detecting	interacting	

regions	enables	analysis,	identification	and	interpretation	of	specific	proteins/TF	

complexes	mediating	these	interactions.	This	TF	analysis	can	be	improved	by	de	

novo	motif	discovery	in	PIR	sequences,	incorporation	of	protein–protein	interaction	

networks	to	identify	protein/TF	complexes,	and	protein	domain	compatibility	

information.	Using	the	identified	interacting	sequences	and	mediating	TFs	can	help	

build	predictive	models	for	regulatory	interactions	such	as	(48,	49).	Another	

direction	in	which	our	fine	mapping	HIPPIE2	method	will	prove	useful	is	in	

comparison	and	analysis	of	changes	in	fine-scale	regulatory	networks	during	

development	or	between	different	conditions.	HIPPIE2	is	freely	available	as	an	open	

source	pipeline	(https://bitbucket.org/wanglab-upenn/HIPPIE2).	HIPPIE2	

generated	interaction	data	is	also	available	in	UCSC	Genome	Browser	hub	

(https://genome.ucsc.edu/s/alexamlie/HIPPIE2%20vs%20Rao%20all%20cell%20

lines%20darker%20interaction%20lines).		
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Availability	

HIPPIE2	software	is	freely	available	at	https://bitbucket.org/wanglab-

upenn/HIPPIE2.	All	of	the	functional	genomics	data	and	annotations	used	by	

HIPPIE2	are	available	at	

https://tf.lisanwanglab.org/GADB/full_HIPPIE2_annotations.tar.gz.	The	

corresponding	interaction	data	tracks	are	available	on	the	UCSC	genome	browser:	

https://genome.ucsc.edu/s/alexamlie/HIPPIE2%20vs%20Rao%20all%20cell%20li

nes%20darker%20interaction%20lines.	
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