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ABSTRACT
Effective computational methods for peptide-protein binding

prediction can greatly help clinical peptide vaccine search and
design. However, previous computational methods fail to capture
key nonlinear high-order dependencies between different amino acid
positions. As a result, they often produce low-quality rankings of
strong binding peptides. To solve this problem, we propose nonlinear
high-order machine learning methods including high-order neural
networks with deep extensions and high-order Kernel Support Vector
Machines to predict peptide-MHC binding. The proposed methods
improve quality of binding predictions over other prediction methods.
With the proposed methods, a significant gain of up to 34% is
observed on benchmark and reference peptide data sets and tasks,
which demonstrates the importance of effectively modelling high-
order feature interactions for predicting peptide targeting. Moreover,
for the first time, our experiments show that pre-training with high-
order semi-Restricted Boltzmann Machines will significantly improve
the performance of feed-forward high-order neural networks, which is
an important result in deep learning.

1 INTRODUCTION
In this paper, we propose novel machine learning methods to study
a specific type of peptide-protein interaction, that is, the interaction
between peptides and Major Histocompatibility Complex class I
(MHC I) proteins, although our methods can be readily applicable to
other types of peptide-protein interactions. Peptide-MHC I protein
interactions are essential in cell-mediated immunity, regulation
of immune responses, vaccine design, and transplant rejection.
Therefore, effective computational methods for peptide-MHC I
binding prediction will significantly reduce cost and time in clinical
peptide vaccine search and design.

Previous computational approaches to predicting peptide-MHC
interactions are mainly based on linear or bi-linear models,
and they fail to capture key non-linear high-order dependencies
between different amino acid positions. Although previous Kernel
SVM and Neural Network (NetMHC) [9, 7, 3] approaches can
capture nonlinear interactions between input features, they fail to
model the direct strong high-order interactions between features.
As a result, the quality of the peptide rankings produced by
previous methods is not good enough. Producing high-quality
rankings of peptide vaccine candidates is essential to the successful
deployment of computational methods for vaccine design. For
this purpose, we need to effectively model direct non-linear high-
order feature interactions to directly capture interactions between
primary (anchor) and secondary amino acid residues involved in the
formation of peptide-MHC complexes.

Therefore, for the first time, we use high-order Restricted
Boltzmann Machine (RBMs) to pre-train a (deep) feed-forward
high-order neural network and propose high-order Kernel SVM
for peptide-MHC binding prediction. With the proposed methods,
a significant gain of up to 34% is observed on benchmark and
reference peptide data sets and tasks.

2 METHODS

2.1 Deep Neural Network and High-Order Neural
Network

Instead of using an ensemble of traditional neural networks to predict MHC
class-peptide bindings as in the state-of-the-art approach NetMHC [11, 2, 9],
we use deep neural networks pre-trained with RBMs and High-Order Neural
Networks (HONN) pre-trained with a special type of high-order Semi-
RBMs called mean-covariance RBMs (mcRBMs), capable of capturing
strong high-order interactions of feature descriptors of input peptides, to
produce high-quality rankings of binding peptides (T-cell epitopes). In our
experiments, we use BLOSUM substitution matrix as continuous descriptors
of input peptide sequences.

In our Deep Neural Network (DNN) as shown on the left panel of Fig. 1,
we use Gaussian RBM to pre-train the network weights of the first layer, and
we use binary RBM to pre-train the connection weights of upper layers in a
greedy layer-wise fashion. In our High-Order Neural Network (HONN) as
shown on the right panel of Fig. 1, we use mcRBM to pre-train the network
weights of the first layer, and we optionally add upper layers if we have
enough training data, and we use binary RBM to pre-train the connection
weights in possibly available upper layers. In both DNN and HONN, we use
a logistic unit as our final output layer, and then we use back-propagation to
fine-tune the final network weights by minimizing the cross entropy between
predicted binding probabilities and true binding probabilities.

The pre-training module mcRBM of HONN extends traditional Gaussian
RBM to model both mean and explicit pairwise interactions of input feature
values, and it has two sets of hidden units, mean hidden units modeling
the mean of input features and covariance hidden units gating pairwise
interactions between input features. If the gating hidden units are binary, they
act as binary switches controlling the pairwise interactions between input
features.

In the following, we will first review traditional Gaussian RBMs. The
energy function of Gaussian RBM is,

E(v, h) = −
∑
i,j

vi

σi
hjwij −

∑
i

(vi − ai)2

2σi2
−

∑
j

bjhj , (1)

where i indexes visible units such as peptide sequence features, j indexes
hidden units, wij is the network connection weight between visible
feature i and hidden unit j, bj is the bias of hidden unit j, and ai
and σi are, respectively, the bias and variance of visible feature i. For
simplicity, we assume the variance of the visible units to be 1. We use
Contrastive Divergence (CD) to learn the network connection weights, which
approximately maximizes the log-likelihood of input data. The CD updates
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for the weights can be written as follows,

wij = ε(< vihj >data − < vihj >T ), (2)

where ε is the learning rate, < · >data denotes the expectation with respect
to data distribution, and < · >T denotes the expectation with respect to
the T -step Gibbs Sampling samples from the model distribution. Binary
RBM takes a similar energy function to that of Gaussian RBM except that
both visible units and hidden units are binary. As a result, the conditional
probability distributions of binary RBM take the form of sigmoid functions.

Gaussian RBMs are very difficult to train using binary hidden units. This
is because unlike binary data, continuous valued data lie in a much larger
space. One obvious problem with the Gaussian RBM is that given the hidden
units, the visible units are assumed to be conditionally independent, meaning
it tries to reconstruct the visible units independently without using the
abundant covariance information present in all datasets. The knowledge of
the covariance information reduces the complexity of the input space where
the visible units could lie, thereby helping RBMs to model the continuous
distribution more efficiently. Covariance RBM [5] tried to use hidden units
to gate the pairwise interaction between the visible units, leading to the
following energy function,

E(v, h) =
1

2

∑
i,j,k

vivjhkwijk −
∑
i

aivi −
∑
k

bkhk (3)

To take advantage of both the Gaussian RBM (which models the mean)
and the covariance RBM, the resulting model called mean-covariance RBM
(mcRBM) uses an energy function that includes both the energy terms,

E(v, hg , hm) =
1

2

∑
i,j,k

vivjhk
gwijk −

∑
i

aivi −
∑
k

bkhk
g

−
∑
ij

vihj
mwij −

∑
k

ckhk
m (4)

In the above equation, each hidden unit modulates the interaction between
each pair of input features leading to a large number of parameters in wijk
to be learned. To reduce this complexity, we can factorize the weight wijk
as follows [6],

wijk =
∑
f

CifCjfPkf (5)

The energy function can now be written as

E(v, hg , hm) =
1

2

∑
f

(
∑
i

viCif )
2
(
∑
k

hkPkf )−
∑
i

aivi

−
∑
k

bkhk
g −

∑
ij

vihj
mwij −

∑
k

ckhk
m(6)

Using this energy function, we can again derive the conditional
probabilities of hidden units given visible units, as well the respective
gradients for training the network. The structure of this factorized mcRBM
is shown on the bottom of the right panel of Fig. 1, the hidden units on the
left model mean and those on the right model covariance. We used CD to
learn the factorized weights in mcRBM as in Gaussian RBM, and we used
Hybrid Monte Carlo sampling to generate the negative samples as in [13].

2.2 High-order Kernel Models
The sequence of the descriptors corresponding to the peptide X =
x1, x2, . . . , x|X|, xi ∈ Σ can be modeled as an attributed set of descriptors
corresponding to different positions (or groups of positions) in the peptide
and amino acids or strings of amino acids occupying these positions:

XA = {(pi,di)}ni=1

where pi is the coordinate (position) or a set (vector) of coordinates and
di is the descriptor vector associated with the pi, with n indicating the

Fig. 1: The structure of DNN (left) and HONN (right).

cardinality of the attributed set descriptionXA of peptideX . The cardinality
of the description XA corresponds to the length of the peptide (i.e., the
number of positions) or to in general to the number of unique descriptors
in the descriptor sequence representation. A unified descriptor sequence
representation of the peptides as a sequence of descriptor vectors is used
to derive attributed set descriptions XA.

2.3 High-order kernel functions on peptide descriptor
sequence representations

In the following we define kernel functions for peptides based on peptide
descriptor sequence representations. The proposed kernel functions for
peptide sequences X and Y have the following general form:

K(X,Y ) = K(M(X),M(Y )) = K(XA, YA)

=
∑
iX

∑
jY

kp(pXiY ,p
Y
jY

)kd(dXiX ,d
Y
jY

)
(7)

where M(·) is a descriptor sequence (e.g., spatial feature matrix)
representation of a peptide, XA(YA) is an attributed set corresponding to
M(X) (M(Y )), kd(·, ·), kp(·, ·), are kernel functions on descriptors and
context/positions, respectively, and iX , iY index elements of the attributed
sets XA, YA. A number of kernel functions for descriptor sequence (e.g.,
matrix) forms M(·) is described below.

Using real-valued descriptors (e.g., vectors of physicochemical
attributes), with RBF or polynomial kernel function on descriptors, the
kd(dα,dβ) is defined as

exp(−γd||dα − dβ ||)

where γd is an appropriately chosen weight parameter, or

(〈dα,dβ〉+ c)p

where p is the degree (interaction order) parameter and c is a parameter
controlling contribution of lower order terms.

Kernel functions kp(·, ·) on position sets pi and pj are defined as a set
kernel

kp(pi,pj) =
∑
i∈pi

∑
j∈pj

k(i, j|α, β)

where

k(i, j|α, β) =
1

|i− j|α
+ β = exp(−α log(|i− j|)) + β

is a kernel function on pairs of position coordinates (i, j).
The position set kernel function above assigns weights to interactions

between positions (i, j) according to k(i, j|α, β).
The descriptor kernel function (e.g., RBF or polynomial) between

two descriptors di = (di1, d
i
2, . . . , d

i
R) and dj = (dj1, d

j
2, . . . , d

j
R)
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induces high-order (i.e. products-of-features) interaction features (such as
di1di2 . . . dip for polynomial of degree p) between positions / attributes.

The proposed kernel function (Eq. 7) captures high-order interactions
between amino acids / positions by considering essentially all possible
products of features encoded in descriptors d of two or more positions.
The feature map corresponding to this kernel is composed of individual
feature maps capturing interactions between particular combinations of the
positions. The interaction maps between different positions pa and pb are
weighted by the position/context kernel function kp(pa,pb).

3 DATA
In order to assess the performance of our high-order methods, we tested
our methods on three prediction tasks: 1. MHC-I binding prediction; 2.
Naturally processed (“eluted”) peptide prediction. We use recently compiled
benchmark data from the 2nd Machine Learning in Immunology competition
(MLI-II). 3. T-cell epitope prediction. We use data of known T-cell epitopes
to test ability of the methods in predicting promising candidates for clinical
development.

For all of the tasks, we focused on the 9-mer peptides. For MHC-I binding
prediction, we threshold at a standard value IC50 = 500 to separate binding
peptides (IC50 < 500) and non-binding (IC50 > 500) peptides and focus
on three alleles (HLA-A*0201, HLA-A*0206, HLA-A*2402). The choice
of these alleles is motivated by the target population group (Japanese) in
our research (due to the 4-page space constraint, we only show results for
HLA-A*2402, and the results for the other two alleles have a similar trend).
The application of our method to other alleles or peptide lengths would be
straightforward.

3.1 Training and testing protocol
For MHC-I binding prediction, we train our models for each allele on the
publicly available data from the Immune Epitope Database and Analysis
Resource (IEDB). For testing, we use the experimental data from our
lab for each allele. These datasets are denoted with ’Japanese’ suffix.
The training ’IEDB’ datasets and the test ’Japanese’ datasets are
completely disjoint.

3.2 Evaluation metrics
To assess performance, we use two sets of metrics, classical binary metrics
and non-binary relevance metrics.

Binary performance metrics. We used (1) Area under ROC curve (AUC);
(2) area under ROC curve up to first n false positives (ROC-n).

Non-binary relevance/quality metrics. While classical binary performance
metrics use binary relevance (i.e. “1”=relevant, “0”=non-relevant), to take
into account more “precise” relevance measure, i.e. the binding strength
of the peptides, we use normalized discounted cumulative gain (nDCG), a
classical non-binary (graded) relevance metric.

Given a list of peptides p1, . . . , pN ordered by the output scores of
the predictor, the discounted cumulative gain (DCGN ) is defined as a
sum of individual peptide relevance scores (binding strength) q1, q2, . . . , qn
discounted by the log of their position i in the list:

DCGN =
N∑
i=1

2qi − 1

log(i+ 1)

The normalized DCGN is defined as a ratio between DCG of the method
and an ideal DCG iDCGN (i.e., DCG of an ideal ordering of peptides from
the highest degree of binding affinity to the lowest binding affinity):

nDCGN =
DCGN

iDCGN

The normalized DCGN value is then ranges between 0 and 1, with
nDCGN = 1 corresponding to the ideal value.

We find this measure (nDCG) to be more indicative of the prediction
performance of the MHC-I binding prediction method as it directly assesses
whether the predictor ranks stronger binders higher than weaker binders (as

Table 1. Comparison of AUC test scores on A2402-Japanese data

method AUC ROC-5 ROC-10 ROC-30

hkSVM 90.59 68.8 75.92 86.93
DNN 89.1 63.52 70.96 84.75
HONN 86.29 54.88 65.04 81.17
hkSVM+HONN 91.07 72.16 77.76 87.55
NetMHC 88.88 53.76 66.88 84.48

Table 2. A2402-Japanese data. Relevance/ranking assessment (nDCG)

method nDCG@10 nDCG@30 nDCG

hKSVM 53.77 64.33 86.68
DNN 51.07 56.88 84.36
HONN 57.36 60.82 85.20
hkSVM+HONN 60.41 69.59 87.35
NetMHC 55.98 68.76 87.57

opposed to binary measures (e.g., ROC) that measure whether “binders” are
ranked higher than “non-binders” irrespectively of the actual peptide binding
strength).

4 RESULTS
We first present results for MHC-I binding prediction on benchmark datasets
and experimental data from our lab. We show next results on predicting
peptides naturally processed by the MHC pathway. Finally, we show results
for predicting promising T-cell epitopes for clinical development.

4.1 MHC-I binding prediction
We train a deep neural network (DNN), a high-order semi-RBM (HONN),
and a high-order kernel SVM (hkSVM) on IEDB data. In our experiments,
we use BLOSUM substitution matrix as continuous descriptors of input
peptide sequences.

We compare with the popular NetMHC method that has been shown to
yield state-of-the-art accuracy for MHC-I binding prediction with respect to
other best published methods (see, e.g., [9, 19, 4]).

We first use ’Japanese’ data sets to test our methods. Results are
shown in Table 1 and 2 for the target allele.

Our method ranks peptides by their actual binding strength significantly
better than other methods. We observe that strong binders are placed much
higher in the classification results compared to the state-of-the-art NetMHC
method. We note that for both HONN and DNN the pre-training is critical
to achieve good performance. The performance comparisons of DNN and
HONN with and without pre-training are in the supplemental material. All
the results of DNN and HONN reported in the main paper are based on
pre-training and fine-tuning.

Using the simple average score of HONN and hkSVM further improves
peptide-MHC recognition as evident by the increase in both area under ROC
curve scores (improved “binder” vs “non-binder” separation) and nDCG
metric quality scores (improved ranking of peptides by binding strength).

We note that unlike the previous approaches that utilized quantitative
binding information during training, no quantitative information regarding
actual binding strength was used to train our models. However, even with
only binary train data, our models correctly order peptides according to their
binding strength. This can be attributed to explicit high-order interaction
modeling by our method that allows to capture intrinsic binding strength
information. Nevertheless, our models can easily use quantitative train data
(e.g., IC50) to further improve our results.

4.2 Eluted peptide prediction
We test ability of our methods on a difficult task that aims at predicting
whether a peptide is naturally processed by the MHC pathway (“eluted”).

3
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This is a very important task as only a fraction of binding peptides (see
“MHC-I binding task”) constitute a set of peptides that are processed to the
surface of a cell and may serve as epitopes. Eluted peptide prediction thus
aims at verifying whether a peptide not only binds to a given MHC molecule,
but that it is also naturally processed by MHC pathway.

To train our models, we used the data provided by MLI-II (2012 Machine
Learning in Immunology competition) http://bio.dfci.harvard.
edu/DFRMLI/HTML/natural.php.

We directly train our models to recognize naturally processed peptides,
using eluted peptides as a positive set, and all other peptides (non-binders
+ non-eluted binders) as a negative set. We then test our models on
the data composed of non-eluted binding peptides, non-binding peptides,
and naturally processed (“eluted”) peptides. We compare our approach
with the popular NetMHC method, which was used as a benchmark in
the competition, as well as the recently introduced MHC-NP [4] method
that yielded state-of-the-art accuracy for naturally processed (NP) peptide
prediction.

Table 3 shows results of naturally processed peptide prediction on the test
set in terms of AUC, ROC-n, and F1 scores. Our approach significantly
outperforms both NetMHC method and the MHC-NP [4] method.

Table 3. Eluted peptide prediction (MLI-II competition). Comparison of test AUC
scores.

method AUC ROC-10 ROC-20 ROC-30 ROC-50

hkSVM 94.75 53.65 65.71 71.48 77.46
HONN 93.17 49.21 58.20 64.13 72.73
DNN 91.80 30.48 41.11 51.32 62.92
hkSVM + HONN 94.96 53.65 68.25 74.39 79.59
NetMHC 92.26 10.63 28.33 40.21 54.32
MHC-NP† 88.06 - - - -
†quoted from [4]

Table 4. Prediction of WT1-derived binding peptides

NetMHC-rank hkSVM+HONN-rank
A2402 allele

W10 41 2
W302 7 4

4.3 Epitope prediction
We demonstrate ability of the method to predict promising peptides for
clinical development using as an example WT1-derived strong binding
peptides W10 and W302, discovered by NEC-Kochi Univ. We compare the
performance of our method and NetMHC by “predicting” in a retrospective
way these T-cell epitopes from WT1 antigen. Peptides (441 9-mers) that are
part of WT1 antigen are ranked by the output scores of NetMHC and our
method. The order of the W10 and W302 peptides in the output of the two
prediction methods is given in Table 4. As evident from the table, our method
ranks these peptides higher than NetMHC method.

5 DISCUSSION AND FUTURE WORK
In this paper, we propose using nonlinear high-order machine learning
methods including Deep Neural Network, High-Order Neural network
with possible deep extensions, and High-Order Kernel SVM for peptide-
MHC I protein binding prediction. Experimental results on both public
and private evaluation datasets according to both binary and non-binary
performance metrics (AUC and nDCG) clearly demonstrate the advantages
of our methods over the state-of-the-art approach NetMHC, which suggests
the importance of modeling nonlinear high-order feature interactions across
different amino acid positions of peptides. Our results are even more

encouraging considering that our models were only trained on a subset of
the binary binding datasets used by NetMHC and NetMHC was also trained
on private quantitative binding datasets.

In the future, we will use available quantitative binding datasets to refine
our Deep Neural Network and High-Order Neural Network model, and
we will incorporate the descriptors of structural contacting amino acids
on MHC proteins into current feature descriptors. The addition of peptide
binding strength and structural information will potentially further improve
the performance of our current models.
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