Efficient evaluation of large sequence kernels

Pavel P. Kuksa
Machine Learning Department
NEC Laboratories America, Inc

Princeton, NJ 08540
pkuksa@nec-labs.com

ABSTRACT

Classification of sequences drawn from a finite alphabet us-
ing a family of string kernels with inexact matching (e.g.,
spectrum or mismatch) has shown great success in machine
learning. However, selection of optimal mismatch kernels
for a particular task is severely limited by inability to com-
pute such kernels for long substrings with potentially many
mismatches. In this work we introduce a new method that
allows us to exactly evaluate kernels for large k, m and ar-
bitrary alphabet size. The task can be accomplished by
first solving the more tractable problem for small alphabets,
and then trivially generalizing to any alphabet using a small
liner system of equations. This makes it possible to explore a
larger set of kernels with a wide range of kernel parameters,
opening a possibility to better model selection and improved
performance of the string kernels. To investigate the utility
of large (k,m) string kernels, we consider several sequence
classification problems, including protein remote homology
detection, fold prediction, and music classification. Our re-
sults show that increased k-mer lengths with larger substi-
tutions can improve classification performance.

Keywords

sequence classification, string kernels

1. INTRODUCTION

Analysis of large scale sequential data has become an impor-
tant task in machine learning and data mining, inspired by
applications such as biological sequence analysis, text and
audio mining. Classification of string data, sequences of dis-
crete symbols, has attracted particular interest and has led
to a number of new algorithms [1, |7, |12 |19]. These al-
gorithms often exhibit state-of-the-art performance on tasks
such as protein superfamily and fold prediction, music genre
classification and document topic elucidation. In particu-
lar, string kernel methods with inexact matching (e.g., mis-
match) have been successful in solving challenging problems
in bioinformatics, text mining, image categorization, music
classification, etc (e.g. [15} |17} |16} |12} (7, 14]).

Vladimir Pavlovic
Department of Computer Science
Rutgers University
Piscataway, NJ 08854
vladimir@cs.rutgers.edu

A family of state-of-the-art approaches to scoring similarity
between pairs of sequences relies on fixed length, substring
spectral representations and the notion of mismatch kernels,
c.f. |7, |12]. There, a sequence is represented as the spectra
(counts) of all short substrings (k-mers) contained within
a sequence. The similarity score is established by exact or
approximate matches of k-mers. Initial work, e.g., [12 [18§],
has demonstrated that this similarity can be computed using
trie-based approaches in O(k™!|Z|™(|X]| + |Y|)) time, for
strings X and Y with symbols from alphabet ¥ and up to
m mismatches between k-mers.

More recently, [9] introduced linear time algorithms with
alphabet-independent complexity O(ck,m (| X|+ |Y|) applica-
ble to computation of a large class of existing string kernels.
In particular, for mismatch kernels, their computation for
strings X and Y is based on cumulative pairwise compari-
son of all substrings a and f contained in X and Y, with the
level of similarity of each pair of substrings («, 3) taken as
the number of identical substrings their mutational neigh-
borhoods Nim(a) and Nim,(B) give rise to (Ni,m(a) is
the set of all k-mers that differ from « by at most m mis-
matches). This result however requires that the number of
identical substrings in (k, m)-mutational neighborhoods of
k-mers a and b (the intersection size) be known in advance,
for every possible pair of m and the Hamming distance d be-
tween k-mers (k and |X| are free variables). Obtaining the
closed form expression for the intersection size for arbitrary
k, m is challenging, with no clear systematic way of enu-
merating the intersection of two mutational neighborhoods.
Closed form solutions obtained in [9] were only provided for
cases when m is small (m < 3).

In this work we introduce a systematic and efficient pro-
cedure for obtaining intersection sizes (Sec. 3) that can be
used for large k and m and arbitrary alphabet size |X|. This
will allow us to effectively explore a much larger class of
(k,m) kernels in the process of model selection. We will
investigate performance impact of using large (k,m) and il-
lustrate it on a number of sequence classification problems
including detecting homology of remotely related proteins,
multi-class fold prediction and classification of music sam-
ples (Sec. 4.1). We will show importance of kernel parameter
selection in Sec. 4.2 and show that using large (k, m) ker-
nels could further improve performance of the string kernel
method.

2. BACKGROUND AND RELATED WORK

The key idea of basic string kernel methods is to apply a
mapping ®(-) to map sequences of variable length into a
fixed-dimensional vector space. In this space a standard ker-
nel classifier, such as a support vector machine (SVM) [21],
can then be applied. As SVMs require only inner products
between examples in the feature space, rather than the fea-
ture vectors themselves, one can define a string kernel which
computes the inner product in the feature space without ex-
plicitly computing the feature vectors:

K(X,Y) = (2(X), (Y)), (1)

where XY € D, D is the set of all sequences composed of
elements which take on a finite set of possible values from
the alphabet 3.

Sequence matching is frequently based on co-occurrence of
exact sub-patterns (k-mers, features), as in spectrum ker-
nels [11] or substring kernels [22]. Inexact comparison in
this framework is typically achieved using different families
of mismatch [12] or profile 7] kernels. Both spectrum-k and
mismatch(k,m) kernel directly extract string features from
the observed sequence, X. On the other hand, the profile
kernel, proposed by Kuang et al. in [7], builds a profile [3|
Px and uses a similar |Z|*-dimensional representation, now
derived from Px. Constructing the profile for each sequence
may not be practical in some application domains, since the
size of the profile is dependent on the size of the alphabet
set. While for bio-sequences |X| = 4 or 20, for music or text
data |X| can potentially be very large, on the order of tens
of thousands of symbols.

Some of the most efficient available trie-based algorithms |12}
18] for mismatch kernels have a strong dependency on the
size of alphabet set X and the number of allowed mismatches.
Both need to be restricted in practice to control the complex-
ity of matching algorithms. Under the trie-based framework,
the list of k-mers extracted from given input strings is tra-
versed in a depth-first search with branches corresponding
to all possible ¢ € 3. FEach leaf node at depth k corre-
sponds to a particular k-mer feature (either exact or inexact
instance of the observed exact string features) and contains
a list of matching features from each string. The kernel ma-
trix is updated at leaf nodes with corresponding matching
feature counts. The complexity of the trie-based algorithm
for mismatch kernel computation for two strings X and Y is
Ok™ 2™ (1 X|+|Y]) |12]. The algorithm complexity de-
pends on the size of ¥, with possible substitutions explicitly
drawn from Y during the trie traversal. Consequently, to
control the complexity of the algorithm we need to restrict
the number of allowed mismatches (m), as well as the al-
phabet size (|X|). Typically, (k,m) are set to no more than
(5,2) for alphabets of size |Z| = 20.

Recent work in 9] introduced linear time algorithms with
alphabet-independent complexity for Hamming-distance based
matching. This enables efficient computation of a wide class
of existing string kernels for datasets with large |3|. The au-
thors show that it is possible to compute an inexact (k,m)
kernel as

min(2m,k)
K(X,Y|m,k)=>" 3 T(a,b)= > ML, (2)
i=0

a€X bey

where Z(a,b) is the number of common substrings in the
intersection of the mutation neighborhoods of a and b, Z;
is the size of the intersection of k-mer mutational neigh-
borhood for Hamming distance i, and M; is the number
of observed k-mer pairs in X and Y having Hamming dis-
tance 7. The algorithms introduced in [9], however, require
as an input the intersection sizes Z; (i.e. number of identi-
cal substrings in the mutational neighborhoods of k-mers a
and b) for all possible Hamming distances between a and b.
No systematic way of obtaining these intersection sizes has
been proposed in [9]. Closed-form solutions have been sug-
gested for cases of small m (m < 3). For larger values of m
(m > 3), it becomes substantially more difficult to combina-
torially enumerate the intersection of the neighborhoods as
the neighborhood grow exponentially with m. In the next
section we address these issues and propose a systematic way
of computing intersection sizes that can be used for larger k
and m.

3. FINDING INTERSECTION SIZES FOR
LARGE K AND M

For large values of k and m finding intersection sizes needed
for kernel computation can be problematic. This is because
while for smaller values of m combinatorial closed form so-
lution can be found easily, for larger values of m finding it
becomes more difficult due to an increase in the number of
combinatorial possibilities as the mutational neighborhood
increases (exponentially) in size. On the other hand, direct
computation of the intersection by trie traversal algorithm
is computationally difficult for large £ and m as the com-
plexity of traversal is O(k™%!|Z|™), i.e. is exponential in
both k£ and m. The above mentioned issues do not allow
for efficient kernel evaluation for large k£ and m. We will
further discuss in what follows approaches to computing in-
tersection sizes and propose an efficient method that can
effectively compute intersection sizes for large k£ and m and
allows to explore more complex kernels (with large k and
m) that as we will show in Section 4.2 can further improve
performance of the string kernel method.

The number of k-mers at the Hamming distance of at most
m from both k-mers a and b, Z(a,b), can be found in a
weighted form

m

Z(a,b) = Y wi(|Z] - 1)°. (3)

i=0

Coefficients w; depend only on the Hamming distance d(a, b)
between k-mers a and b for fixed k, m, and |X|. The inter-
section size Z and coefficients w; can be precomputed for a
given setting (k,m,|X|) in a number of different ways. In
the following, we discuss possible approaches for intersection
size computation.

Brute-force. Directly computes intersection sizes for 0 <
d < 2m by performing 2m trie traversals for k-mer pairs
a and b over alphabet ¥ at distances d = 1...2m. This
does not compute w; explicitly. Brute-force trie traversal for
computing intersection sizes is applicable only for moderate
values of |X|, k, m.

Analytic (closed-form) solution. The set of coefficients w; for
every possible distance d(a,b) and a fixed m can be found

in a closed form with k and |X| as variables (see |9]). For
example, when m = 2 the intersection sizes can be found in
closed form as

| Niownl, d(a,5) = 0
1+k(Z] = 1)+ (k- 1)(Z - 1)?,d(a,b) = 1

(ﬂf(i’z)z 1420k — 1)(] = 1) + (5] — 1%, d(a,b) = 2
(a,b) =3

(a,b) =4

Once the closed form solution is found for every (m, d) pair,
the intersection sizes for given k, |X| can be found in constant
time. However, it is difficult to obtain closed form solution
for larger k, m. Currently, analytic solutions are known for
m < 4, with no known solutions for m > 4.

Finding coefficients by solving linear systems of equations.
It is possible to efficiently compute the intersection sizes
by reducing (k,m, |3|) intersection size problem to a set of
less complex intersection size computations. We discuss this
approach below.

3.1 Reduction-based computation of intersec-

tion size coefficients
For every Hamming distance 0 < d(a,b) < 2m, the corre-
sponding set of coefficients w;,i = 0,1,...,m can be found
by solving a linear system Aw = Z of m + 1 equations
with each equation corresponding to a particular alphabet
size |X| € {2,3,...,m + 2}. The left-hand side matrix A

is an (m+41,m+1) matrix with elements a;; = (i + 1)77%,
i=1,...m+1,75=1....m+1

1° 1 1? m

0 1 2 m
A— 2 2 2 2

(m+1)° (m+1)" (m+1)° (m+1)™

The right-hand side Z = (Iy, I1, ..., I,)7T is a vector of in-
tersection sizes for a particular setting of k, m, d, |3| =
2,3,...,m+ 2. Here, I;,2 = 0...m is the intersection size
for a pair of k-mers over alphabet size ¢ + 2. Note that
I; need only be computed for small alphabet sizes, up to
m + 2. Hence, this vector can feasibly be computed using
a trie traversal for a pair of k-mers at Hamming distance
d even for moderately large k as the size of the trie is only
(m + 2)* as opposed to |%|F. This allows now to evaluate
kernels for large & and m as the traversal is performed over
much smaller tries, e.g., even in case of relatively small pro-
tein alphabet with |X| = 20, for m = 6 and k = 13, the size
of the trie is 203 /(6 + 2)*® = 149011 times smaller. Coeffi-
cients w obtained by solving Aw = Z do not depend on the
alphabet size |X|. In other words, once found for a particular
combination of values (k,m), these coefficients can be used
to determine intersection sizes for any given finite alphabet
|X| using Eq. 3.

We summarize the intersection size computation in Algo-
rithm 1. The algorithm receives as the input the problem
parameters k, m, and |X| and returns both the vector of
(min(k,2m) 4 1) intersection sizes Zy x| (lookup table)
for a given (k, m,|X]|)-problem and the weight matrix Wy .,
that can be used to obtain intersection sizes for any alphabet

size |X|. The overall complexity of the algorithm is O((2m+
D™ (m4-2)™). Compared to O((2m+1)k™*|S|™) com-
plexity of computing intersection sizes directly using trie
traversals, proposed algorithm has lower complexity by a

]|
factor of (m—+2

agrees with observed running time improvements).

)m (as we show empirically in Sec. 4.3 this

Algorithm 1: Intersection size computation

Input: kernel parameters k and m, alphabet size |3
1: for d = 0 to min(k,2m) do
2: {for each Hamming distance d}
fori=2tom+ 2 do
{for each alphabet size i =2...m + 2}
Create a pair of k-mers a and b with Hamming
distance h(a,b) =d
6: Obtain intersection size I; by computing
(k, m)-mismatch kernel Ky ,(a,b) using trie
traversal over i* tree.
end for
8: Set (m+1) x (m+ 1) matrix A with
Ay=0G+1)0UY i=1,...m+1,j=1,....m+1
9: Solve Aw = I to obtain weight vector w
10: Set (d + 1)th row of Wy to w
11: end for
12: Compute vector of intersection sizes
Tim, x| = Wem (2] = 1) (2= 1)™)7
Output: Weight matrix Wy », of size
(min(k, 2m) 4+ 1,m + 1), vector of intersection sizes
(lookup table) Ty |z

o

Some examples of weight matrices Wy ,,, for various settings
of k and m are shown in the Appendix. Intersection sizes 7
can be obtained for a particular alphabet size |X| by multi-
plying weight matrix Wi, by a vector of (|X| — 1) powers
as in Eq. 3, i.e.

_1N\T
Ttz = Wim (137 [2[I=mt)

We note that weight matrices Wy ., (steps 1-11 of Algo-
rithm 1) can be pre-computed, and then once computed used
to solve (k,m)-mismatch problems for a given alphabet ¥
(i.e. weight matrices W ., are alphabet-size independent).

4. EXPERIMENTS

We evaluate the utility of large (k,m) computations as a
proxy for model selection, by allowing a significantly wider
range of kernel parameters to be investigated during the
selection process. In these evaluations we follow the experi-
mental settings considered in [10] and [9].

We use three standard benchmark datasets: the SCOP dataset
(7329 sequences, 54 experiments) |23| for remote protein ho-
mology detection, the Ding-Dubchak dataset® (27 folds, 694
seqs) [2} 4] for multi-class protein fold recognition, and music
genre data® (10 genres, 1000 seqgs) [13] for multi-class genre
prediction. For remote protein homology experiments, we
follow standard experimental setup used in previous stud-
ies |23] and evaluate average classification performance on

http://ranger.uta.edu/~chqding/bioinfo.html
Zhttp://opihi.cs.uvic.ca/sound/genres

54 remote homology experiments, each simulating the re-
mote homology detection problem by training on a subset
of families under the target superfamily and testing the su-
perfamily classifier on the remaining (held out) families ac-
cording to SCOP hierarchy (Figure 1). For music genre
classification, we use vector quantization (VQ) to represent
original sequences of 13-dim. MFCC vectors as strings over
|X| = 2048 alphabet, and we use 5-fold cross-validation error
to evaluate classification performance. For multi-class fold
prediction, we use standard data splits as described in |2}
4]. Data and source code are available at the supplementary
website [20].

very low
sequence similarity

low

sequence similarity Superfamily

1.a1

Superfamily
1.ad

sequence similarity | Family Family Family
1.21.1 1.21.2 1213

Figure 1: SCOP hierarchy. Protein domains orga-
nized into classes, folds, superfamilies, and families.
Protein sequences from same superfamily but differ-
ent families are considered remote homologs.

4.1 Large (k,m) performance evaluation

In this section, we investigate the impact of kernel parame-
ters on the classification performance on the three sequence
classification tasks. For each task, we evaluate classification
performance over a large range of settings for k£ and m. Such
large range evaluation is the first of its kind, made possible
by our efficient kernel evaluation algorithm.

Evaluation measures. The methods are evaluated using 0-1
and top-q balanced error rates as well as F1 scores and pre-
cision and recall rates. Under the top-q error cost function,
a classification is considered correct if the rank of the correct
label, obtained by sorting all prediction confidences in non-
increasing order, is at most g. On the other hand, under the
balanced error cost function, the penalty of mis-classifying
one sequence is inversely proportional to the number of se-
quences in the target class (i.e. mis-classifying a sequence
from a class with a small number of examples results in
a higher penalty compared to that of mis-classifying a se-
quence from a large, well represented class). We evaluate
remote protein homology performance using standard Re-
ceiver Operating Characteristic (ROC) and ROC50 scores.
The ROC50 score is the (normalized) area under the ROC
curve computed for up to 50 false positives. With a small
number of positive test sequences and a large number of
negative test sequences, the ROC50 score is typically more
indicative of the prediction accuracy of a homology detection
method than the ROC score.

Results of mismatch kernel classification for the remote ho-
mology detection problem are shown in Table 1. We ob-
serve that larger values of k and m perform better compared
to typically used values of k=5-6, m=1-2. For instance,

Table 1: Remote homology. Classification per-
formance (mean ROC50) of the mismatch kernel
method in the supervised setting

Kernel Mean ROC Mean ROC50
mismatch(5,1) 87.75 41.92
mismatch(5,2) 90.67 49.09
mismatch(6,2) 90.74 49.66
mismatch(6,3) 90.98 49.36
mismatch(7,3) 91.31 52.00
mismatch(7,4) 90.84 49.29
mismatch(9,3) 90.27 47.00
mismatch(9,4) 91.45 53.51
mismatch(10,4) 91.02 50.49
mismatch(10,5) 91.60 53.78
mismatch(13,6) 90.98 50.11

Table 2: Statistical significance of the differences
between (k,m) kernels (p-values according to signed
rank test). Kernels with large (k,m) perform better
than the traditionally used (k, m) kernels

Gl (52 (62 (63 (74 (94
(5,2) |3.4e-04
(6,2) [3.7¢-06 3.8¢-01
(6,3) |1.4¢-03 7.2¢-01 7.7e-01
(7,4) |2.2e-03 7.0e-01 9.8¢-01 8.7e-01
(9,4) |1.6e-06 3.2¢-03 7.3¢-04 1.4e-02 2.9e-02
(10,5)|3.1¢-06 1.8¢-03 1.5¢-03 2.5¢-03 9.4e-03 5.6e-01

(k=10,m=>5)-mismatch kernel achieves significantly higher
average ROCS50 score of 53.78 compared to ROC50 of 41.92
and 49.09 for the (k=5,m=1)- and (k=5,m=2)- mismatch
kernels (with p-values 3.1e-6 and 1.8e-3, respectively). Ta-
ble 2 shows for each of the (k, m) kernel methods p-values of
the Wilcoxon signed-rank test on the ROC50 scores against
other (k,m) kernels. The utility of such large mismatch
kernels was not possible to investigate prior to this study.
As can also be seen from comparison with other state-of-
the-art methods (including PSI-BLAST, Smith-Waterman
similarity-based SVM [14], subsequence [15] and recently
proposed spatial sample kernels (SSSK) [8] and sequence
learner (SEQL) (5] approaches) in Table 3, large (k, m) mis-
match kernels display state-of-the-art performance.

Table 3: Remote homology prediction. Comparison
with state-of-the-art methods

method ROC ROC50
PSI-BLAST [7] 74.29 29.25
SVM-Fisher |6, |7] 75.66 31.90
SVM-Pairwise (Smith-Waterman) [14] 89.30 43.40
Subsequence kernel [15] 87.23 40.37
SSSK [g] 91.48 51.18
SEQL [5| 92.20 52.37
Mismatch(k=10,m=5) 91.60 53.78

On the multi-class remote fold prediction problem (Table 4),
larger values of k tend to increase precision and result in
higher F1 scores. For instance, top-5 F1 score of 84.00 for
the (kK = 11,m = 6)-mismatch kernel is higher than that
of (k = 5,m = 1) or (k = 5,m = 2) mismatch kernels

Table 4: Multi-class remote fold prediction (Ding&Dubchak dataset).
mismatch kernel method in the supervised setting

Classification performance of the

Top-5

Kernel Error Top-5 Balanced Balanced Recall p-5 Precision Top—§ . F1 Top-5F1
Error Error R call Precision
Error
mismatch(5,1) 51.17 22.19 53.22 28.65 46.78 T71.35 90.52 95.50 61.69 81.68
mismatch(5,2) 42.56 19.32 45.51 22.60 54.49 77.40 67.18 84.68 60.17 80.88
mismatch(5,3) 47.78 23.24 49.69 24.94 50.31 75.06 57.81 77.09 53.80 76.06
mismatch(6,2) 46.74 19.06 50.85 24.55 49.15 75.45 89.64 95.24 63.49 84.19
mismatch(6,3) 43.34 19.84 46.74 22.08 53.26 77.92 65.40 83.77 58.71 80.74
mismatch(7,3) 43.86 18.80 47.21 22.68 52.79 77.32 86.46 93.85 65.55 84.78
mismatch(7,4) 43.60 20.37 47.15 22.68 52.85 77.32 63.92 81.98 57.86 79.58
mismatch(9,2) 63.71 34.46 63.65 43.94 36.35 56.06 93.01 96.88 52.27 71.02
mismatch(9,3) 57.96 30.29 61.51 40.76 38.49 59.24 91.51 96.01 54.19 73.27
mismatch(9,4) 54.57 21.15 57.42 29.00 42.58 T71.00 91.56 96.44 58.13 81.79
mismatch(10,3) 63.97 32.64 63.84 43.05 36.16 56.95 93.01 97.02 52.07 71.77
mismatch(10,4) 57.96 28.72 61.53 39.21 38.47 60.79 91.36 96.00 54.14 74.44
mismatch(10,5) 51.70 19.58 55.65 26.90 44.35 73.10 91.76 96.55 59.80 83.20
mismatch(10,6) 42.82 19.06 47.28 22.43 52.72 T7.57 76.32 89.43 62.36 83.08
mismatch(11,4) 62.92 30.81 64.08 42.36 35.92 57.64 92.28 96.90 51.72 72.28
mismatch(11,5) 57.70 27.68 61.37 38.53 38.63 61.47 91.32 96.01 54.29 74.95
mismatch(11,6) 48.56 18.28 53.33 25.28 46.67 74.72 90.80 95.91 61.65 84.00
mismatch(13,4) 65.80 34.20 65.40 44.97 34.60 55.03 92.73 96.91 50.40 70.19
mismatch(13,5) 64.75 32.11 64.68 44.05 35.32 55.95 92.84 97.05 51.18 70.98

with F1 scores of 81.68 and 80.88, respectively. For longer k
increasing the maximum number of allowed mismatches m
tends to increase recall rates, while keeping precision rates
almost the same. For example, recall rates change from
36.16 to 52.72 for the £k = 10 case as m changes from 3 to
6. We also note that using m > k/2 compared to m < k/2
can result in significant drops in precision rates, e.g. (k =
10,m = 6)-mismatch kernel has much lower precision rate
of 76.32 compared to 91.76 of the (k = 10, m = 5)-mismatch
kernel.

For the music genre classification task (Table 5), parameter
combinations with moderately long k and larger values of
m tend to perform better than kernels with small m. As
can be seen from results, larger values of m are important
for achieving good classification accuracy and outperform
setting with small values of m. However, increasing (k,m)
does not result in high performance gains, possibly because
of significant reduction in recall for these large alphabet se-
quences.

Table 5: Multi-class music genre recognition. Clas-
sification performance of the mismatch method

Top-2

Kernel Error F1 Top-2 F1
Error
mismatch(5,1) 34.843.49 18.3 65.36 81.95
mismatch(5,2) 32.6+2.63 18.0 67.51 82.21
mismatch(6,3) 32.440.96 19.0 67.79 81.22
mismatch(7,4) 31.1+2.07 18.0 68.96 82.16
mismatch(9,3) 31.441.25 18.0 68.59 82.33
mismatch(9,4) 32.24+1.82 17.8 67.83 82.36
mismatch(10,3) 32.3+1.3 18.0 67.65 82.12
mismatch(10,4) 31.7£1.52 19.1 68.29 81.04

4.2 Class-specific kernel/parameter selection
In what follows, we discuss approaches for kernel parameter
selection. In particular, we focus on a question of selecting
mismatch kernel parameters £ and m that would be appro-
priate for a task at hand. We note that reduced running
time requirements of our algorithm open the possibility to
consider various parameter selection strategies (validation,
uniform, MKL) with a larger set of (k,m) kernels. The re-
sults presented here demonstrate that such large (k,m) ker-
nels could lead to significant performance improvements.

4.2.1 Parameter selection by validation

One approach to the parameter selection is to select k and m
that perform best on average according to the validation set.
We demonstrate this approach on remote protein homology
detection task within SCOP hierarchy. In SCOP, a man-
ually curated protein data set, sequences are grouped into
a tree hierarchy containing classes, folds, superfamilies, and
families, from root to leaf (Fig. 1). As validation data is not
available on the standard benchmark dataset, we split the
original training set into two disjoint subsets, a now smaller
training subset and a validation subset. Validation subset is
obtained by holding out a single family (positive validation
examples) and 20% of the negative training sequences. After
training on a now smaller training subset, the performance
of a particular combination of values k£ and m is measured on
a validation set. We then select the best performing com-
bination (k,m) (according to the validation set) as kernel
parameters for the mismatch kernel.

We show results in Table 6 for various choices of k and m
(results are average ROC and ROCS50 scores for 54 exper-
iments). One can observe that according to performance
on the validation set larger values of £k and m are pre-
ferred. For instance, on the validation set, mismatch-(k=9,
m=4) and (k=10,m=5) achieve top two ROC50 scores of

Table 6: Remote homology. Classification performance (mean ROC and ROC50) of the mismatch kernel

method in the supervised setting (with validation set)

Kernel ROC (Test) ROC50 (Test) ROC (Validation) ROC50 (Validation)
mismatch(5,1) 85.75 39.47 88.28 73.21
mismatch(5,2) 89.62 48.10 90.36 7.7
mismatch(6,2) 89.26 48.72 90.61 77.89
mismatch(6,3) 89.95 48.38 90.32 77.05
mismatch(7,3) 90.08 51.64 91.17 79.21
mismatch(7,4) 89.79 47.74 90.04 76.40
mismatch(9,3) 87.14 44.27 89.55 76.47
mismatch(9,4) 89.97 52.59 91.90 81.57
mismatch(10,4) 88.77 48.47 90.90 79.15
mismatch(10,5) 90.40 52.96 92.34 81.30
mismatch(11,5) 89.68 50.14 91.52 80.25
mismatch(11,6) 90.58 52.72 92.38 81.23
mismatch(13,5) 86.57 42.56 87.79 70.12

81.57 and 81.30 compared to 77.17 or 79.21 of tradition-
ally used mismatch-(k=5m=2) and (k=7,m=3). We also
observe that best performing kernels according to the vali-
dation set also perform best on the test set. The top two
kernels with (k=9,m=4) and (k=10,m=>5) achieve highest
average ROCS50 scores of 52.59 and 52.96. Similar trends
are observed with respect to ROC.

4.2.2 Uniform multiple kernel combination

Another approach for setting kernel parameters is to con-
sider the kernel equivalent to a combination of multiple ker-
nels, with each individual kernel corresponding to a partic-
ular choice of k and m. This approach does not select a
particular value for k or m, it rather uses a set of (k, m) val-
ues in a uniform combination. This may be advantageous
compared to selecting particular values for k and m as there
might not be a single choice of parameter values which would
work best in all cases, e.g., for all superfamilies. By not fix-
ing the values of k and m, the classifier (SVM) can learn
importance/usefulness of a particular choice of k and m.

We present selection of results on remote homology detection
in Table 7 using a uniform mixture of mismatch kernels with
k = 1..13 and m = 1...6. As evident from the results,
the performance of the uniform mixture (column 1) is very
similar to the performance of the best single kernel as found
by the validation (Sec. 4.2.1, Table 6).

4.2.3 Multiple kernel learning

Using a weighted combination of multiple kernels may po-
tentially give better performance compared to a uniform
kernel combination. Here we show results for using mul-
tiple kernel learning (MKL) [24] on remote homology detec-
tion. We again use the same large pool of mismatch kernels
k=5...13, m=1...6 and learn a multiple kernel combina-
tion for each of the 54 remote homology problems.

The results for multiple kernel learning on remote homology
detection are shown in Table 7 (only a selection of the tasks
is shown). While the resulting average ROC50 (column 2 in
Table 7) are slightly lower compared to uniform combination
(column 1), the results are similar and seem to suggest that
for different superfamilies, a different setting of parameters
k and m may be needed. This is also clear from the best-case

results for the selection of parameter values based on the test
set performance (last column in Table 7). We observe that
best performing k and m differ across different superfamilies,
suggesting the need for a kernel combination.

4.2.4 Comparison of kernel selection approaches
According to the SCOP hierarchy, (1) a single kernel can be
selected for the entire hierarchy, (2) kernels can be selected
at a superfamily level, i.e. on a per-superfamily basis, (3)
kernels can be selected at a family level, i.e. on a per-family
basis. Selection itself can be based on train, validation, or
test performance. In Table 8 we summarize performance
of various kernel selection strategies including validation-
based kernel selection, best-case (test-based) selection, uni-
form kernel combination and multiple kernel learning. While
multiple kernel learning selects kernel mixture at a family
level, uniform kernel combination is the same for all super-
families/families, i.e. it is similar to selecting a single best
kernel based on average performance across all superfami-
lies/families. For superfamily-level selection, a single kernel
is selected for a given superfamily based on the average per-
formance across families belonging to the superfamily.

Table 8: Remote homology. Comparison of kernel
selection approaches.

Method Mean ROC50
Validation-based selection (single kernel) 52.59
Validation-based selection (per family) 47.43
Validation-based selection (per superfamily) 49.89
Test-based selection (single kernel) 53.78
Test-based selection (per family) 60.32
Test-based selection (per superfamily) 56.16
Uniform multiple kernel combination 52.11
Multiple kernel learning (per family) 50.78

As we noted before, results for best-case selection (i.e. for
selecting best kernel per superfamily/family based on test
set performance) suggest the need for per-superfamily/per-
family parameter selection to improve the classification per-
formance. The reduced running time requirements of our al-
gorithm allows to consider various parameter selection strate-
gies (validation, uniform, MKL) with a larger set of (k,m)
kernels. Our results show (Tables 7, 8) that per-class selec-

Table 7: Remote homology detection. Kernel selection. Note that best choice of parameter values (k,m) is

class-specific (i.e. depends on protein superfamily/family).

Kernels with larger values k,m achieve higher

prediction accuracy compared to settings with smaller k,and m.

Experiment Uniform kernel i\gfj%k,m) Test ROC50](Bbe:SteI;’OZL validation set) Test ROC50](?;)e;stels,orrrlz test set) Test ROC50
2.56.1.2 13.75 (13,6) 37.75 11, 6) 17.35 (7, 3) 18.11
1.27.1.2 58.57 (13,6) 51.71 (11, 6) 51.02 (7, 3) 58.60
1.4.1.2 67.20 (7,3) 57.6 (5, 3) 62.04 (7, 3) 73.47
3.2.15 57.71 (13,6) 52.86 (11, 6) 52.48 (13, 4) 73.47
2.28.1.3 30.40 (13,6) 27.20 (6, 2) 26.12 (5, 3) 30.61
7.3.6.1 89.11 (5,2) 97.56 (5, 3) 80.95 (11, 6) 93.20
2.1.1.2 80.62 (7,3) 90.50 (11, 4) 81.76 (11, 5) 88.65
2.38.4.5 46.25 (13,6) 33.0 9, 2) 0.00 (5, 3) 56.89
1.36.1.2 26.00 (7,3) 36.33 (5, 3) 1.36 (10, 5) 38.78
1.41.1.2 96.00 (7,3) 97.67 (5, 1) 73.47 (11, 6) 98.98
Mean ROC50: 51.47 50.78 47.43 60.32

Table 9: Running time for kernel computation on
music and protein sequence data

(k,m,|¥X]) Running time (s)
(9,2,2048) 235
(9,3,2048) 373
(9,4,2048) 416
(10,2,20) 82
(10,3,20) 196
(10,5,20) 610

tion with large (k,m) could lead to significant improvements
(average ROC50 53.78 -> 60.32). However, for practical
application (e.g., parameter selection using validation ap-
proach) more data is necessary.

4.3 Running time

We measure the running time for full mismatch kernel ma-
trix computations for SCOP and music genre datasets (i.e.
we compute 7329 x 7329 and 1000 1000 kernel matrices). As
can be seen from the running times in Table 9 our method
allows efficient evaluation for large k, m kernels (running
times are given for protein (7329 seqs) and music (1000 seqgs)
datasets). We note that the running times include time re-
quired for intersection size computations (Algorithm 1).

In Table 10, we report running time improvements of our
proposed method for intersection size computation (Algo-
rithm 1) over brute-force (trie-based) computation of inter-
section sizes. As can be seen from the table, ratios of run-
ning times Tirie/Tlinear as a function of kernel parameters
k,m, and alphabet size |X| are as expected from theoretical
analysis. For example, the obtained speed-up for computing

intersection sizes for k=10,m=>5,|%|=20 is 208x, while the
('2—') is (20/(5 +2))°=190.

expected running time ratio i3

We also note that because of high O(k™%!|Z|™) computa-
tional complexity of finding intersection sizes using explicit
trie traversal, for m > 3 and large alphabet |X| running
time is excessively long (for these cases only expected run-
ning time ratios are shown in Table 10).

S. CONCLUSIONS

In this work we proposed a new systematic method that al-
lows evaluation of inexact string family kernels for long sub-

Table 10: Intersection size computation. Running
time ratio Tirie/Tlincar (Speed-up) of the trie-based
method and proposed algorithm as a function of ker-
nel parameters k, m, and alphabet size |X|. Observed

speed-ups are on the order of (%)m as expected

from theoretical analysis
(k,m) |X| =20 [X] = 100
(5,2) 6 254
(5,3) 27 5931
(6,2) 9 393
(6,3) 45 10118
(7,2) 13 571
(7,3) 57 12848
(7,4) 120 n/a/8x 10*t
(9,4) 132 n/a / 8 x 10
(9,5) 197 n/a / 6 x 10°7
(10,5) 208 n/a / 6 x 10°7
T

expected running time ratio only due to
excessive running time for trie-based method

strings k with large number of mismatches m. The method
finds the intersection set sizes by explicitly computing them
for small alphabet size |X| and then generalizing this to ar-
bitrary large alphabets. We show that this enables one to
explore a larger set of kernels corresponding to a large range
of kernel parameter values which as we demonstrate experi-
mentally can further improve performance of the string ker-
nels. We illustrate impact of the kernel parameters on the
classification performance on a number of sequence classi-
fication tasks and evaluate a number of kernel/parameter
selection strategies. We demonstrate improved performance
on protein remote homology detection, multi-class fold pre-
diction, and classification of music samples.

6. REFERENCES

[1] J. Cheng and P. Baldi. A machine learning information
retrieval approach to protein fold recognition.
Bioinformatics, 22(12):1456-1463, June 2006.

[2] C. H. Ding and I. Dubchak. Multi-class protein fold
recognition using support vector machines and neural
networks. Bioinformatics, 17(4):349-358, 2001.

[3] M. Gribskov, A. McLachlan, and D. Eisenberg. Profile
analysis: detection of distantly related proteins.
Proceedings of the National Academy of Sciences,

[18]

[19]

[20]
[21]

[22]

84:4355-4358, 1987.

E. Ie, J. Weston, W. S. Noble, and C. Leslie.
Multi-class protein fold recognition using adaptive
codes. In ICML °05, pages 329-336, New York, NY,
USA, 2005. ACM.

G. Ifrim and C. Wiuf. Bounded coordinate-descent for
biological sequence classification in high dimensional
predictor space. In Proceedings of the 17th ACM
SIGKDD international conference on Knowledge
discovery and data mining, KDD ’11, pages 708-716,
New York, NY, USA, 2011. ACM.

T. Jaakkola, M. Diekhans, and D. Haussler. A
discriminative framework for detecting remote protein
homologies. Journal of Computational Biology,
7(1-2):95-114, 2000.

R. Kuang, E. Ie, K. Wang, K. Wang, M. Siddiqi,

Y. Freund, and C. S. Leslie. Profile-based string
kernels for remote homology detection and motif
extraction. In CSB, pages 152-160, 2004.

P. Kuksa, P.-H. Huang, and V. Pavlovic. Fast protein
homology and fold detection with sparse spatial
sample kernels. In ICPR 2008, 2008.

P. Kuksa, P.-H. Huang, and V. Pavlovic. Scalable
algorithms for string kernels with inexact matching. In
NIPS, 2008.

P. P. Kuksa and V. Pavlovic. Spatial representation
for efficient sequence classification. In ICPR, 2010.

C. S. Leslie, E. Eskin, and W. S. Noble. The spectrum
kernel: A string kernel for SVM protein classification.
In Pacific Symposium on Biocomputing, pages
566-575, 2002.

C. S. Leslie, E. Eskin, J. Weston, and W. S. Noble.
Mismatch string kernels for SVM protein
classification. In NIPS, pages 1417-1424, 2002.

T. Li, M. Ogihara, and Q. Li. A comparative study on
content-based music genre classification. In SIGIR 03,
pages 282-289, New York, NY, USA, 2003. ACM.

L. Liao and W. S. Noble. Combining pairwise
sequence similarity and support vector machines for
remote protein homology detection. In RECOMB,
pages 225-232, 2002.

H. Lodhi, C. Saunders, J. Shawe-Taylor,

N. Cristianini, and C. Watkins. Text classification
using string kernels. J. Mach. Learn. Res., 2:419-444,
2002.

Z. Lu and H. Ip. Image categorization with spatial
mismatch kernels. In Computer Vision and Pattern
Recognition, 2009. CVPR 2009. IEEE Conference on,
pages 397 —404, june 2009.

C. Saunders, D. R. Hardoon, J. Shawe-Taylor, and

G. Widmer. Using string kernels to identify famous
performers from their playing style. Intell. Data Anal.,
12:425-440, December 2008.

J. Shawe-Taylor and N. Cristianini. Kernel Methods
for Pattern Analysis. Cambridge University Press,
New York, NY, USA, 2004.

S. Sonnenburg, G. Ritsch, and B. Schoélkopf. Large
scale genomic sequence SVM classifiers. In ICML 05,
pages 848-855, New York, NY, USA, 2005.
Supplementary data and code. http://seqam.
rutgers.edu/projects/bioinfo/largekmkernels.

V. N. Vapnik. Statistical Learning Theory.
Wiley-Interscience, September 1998.

S. V. N. Vishwanathan and A. Smola. Fast kernels for
string and tree matching. Advances in Neural

Information Processing Systems, 15, 2002.

23]

using cluster kernels. Bioinformatics,
21(15):3241-3247, 2005.

(24]

J. Weston, C. Leslie, E. Ie, D. Zhou, A. Elisseeff, and
W. S. Noble. Semi-supervised protein classification

Z. Xu, R. Jin, I. King, and M. R. Lyu. An extended

level method for efficient multiple kernel learning. In
NIPS, pages 1825-1832, 2008.

7. APPENDIX: EXAMPLES OF WEIGHT MA -

TRICES
1 6 15 20
1 6 15 10
1 6 21 4
Wes = 1 3 21 1 |,
2 12 12 0
—-10 30 0 ©
20 0 0 O
1 7 21
1 7 21
1 7 21
1 7 15
Wra = 1 10 24
0 —10 60
20 —40 90
—70 140 0
1 9 36
1 9 36
1 9 36
1 9 21
Wo.u = 1 14 66
0 —30 120
20 0 90
—70 140 0
70 0 0
1 10 45
1 10 45
1 10 45
1 10 45
1 10 60
Wios = 1 5 —40
2 80 —90
—28 —70 210
182 —420 560
—378 630 0
252 0 0
1 11 55
1 11 55
1 11 55
1 11 55
1 11 55
1 11 40
Wite = 1 16 215
0 —98 140
42 322 —910
—378 882 —1260
1302 —3528 3150
—1848 2772 0

1 7
1 7
1 7
Wz3 = 1 3
2 18
—10 30
20 O
35 35
35 20
45 10
49 4
40 1
20 0
0 0
0 0
84 126
84 56
119 21
109 6
64 1 ,
20 0
0 0
0 0
0 0
120 210 252
120 210 126
120 280 56
85 280 21
160 205 6
310 105 1
360 30 0
210 0 0
0 0 0
0 0 0
0 0 0
165 330 462
165 330 462
165 330 588
165 260 616
200 365 511
20 665 331
—230 915 156
70 840 42
1120 420 O
1680 O 0
0 0 0
0 0 0

21
21
31
27
12
0
0

462

252
126
56
21

[eNeoleNoNal -

== W
ot Ot

OO O = Ut

http://seqam.rutgers.edu/projects/bioinfo/largekmkernels
http://seqam.rutgers.edu/projects/bioinfo/largekmkernels

