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Abstract

With whole genome sequences of many organisms
readily available, and lack of full functional character-
ization of the genes, computational functional analysis
of whole genomes is a target of intensive research. Of a
particular interest is prediction of regulatory functions,
such as regulation of gene expression by transcription
factors (TFs), proteins that bind to DNA to promote
or suppress transcription of their target genes. Iden-
tification of these transcription factors at the genome
level (i.e. from their sequence) lays a basis for fur-
ther analysis and understanding of gene regulatory net-
works and can serve as a starting point for targeted
high-throughput experiments. In this work, we address
a question of predicting whether a (uncharacterized)
protein is a transcription factor (TF) or not (non-TF)
given its amino acid sequence. We cast this problem as
classification task: we use sequence features as input
variables and output functional class (TF or non-TF).
We show that our proposed method can identify with
high accuracy TFs at whole genome level both within
given organism and across different organisms, as well
as identify novel TF families with high accuracy.

1. Introduction

Analysis of large-scale sequential data has become
an important task in machine learning and pattern
recognition, inspired in part by numerous scientic and
technological applications such as the document and
text classication or the analysis of biological sequences
(DNA, proteins) or whole genome analysis and anno-
tation. One particular way to analyze sequences is to
consider them as strings of symbols (e.g., words, amino
acid residues, etc.)

With the success of many whole-genome sequencing
projects such as for microbial and eukaryotic species,
genome annotation (e.g., functional or structural) is
a necessary next step in analysis and interpretation

of these raw genome sequences. Protein-level func-
tional genome annotation aims at inferring biologi-
cal/biochemical function (e.g., regulation of transcrip-
tion, transport, signal communication, etc) for all the
proteins in the predicted proteome.

In this work, we focus on a protein-level genome
functional annotation. In particular, we aim at pre-
dicting whether a protein is involved in a transcription
factor (TF) activity given its primary (amino acid) se-
quence. We address this problem using a class of su-
pervised and semi-supervised string-based kernel meth-
ods. Application of the proposed methods to transcrip-
tion factor activity prediction on whole genome scale
yields state-of-the-art performance. We also show that
our models trained one genome generalizes to other
(previously unseen) species genomes and displays high
accuracy in this across-organism (trans-species) setting
thus allowing accurate annotation of newly sequenced
genomes. We also demonstrate that our method can be
used to identify novel families of TFs and thus can aid
in annotation of newly sequenced genomes.

2. Background

A variety of methods have been proposed for solv-
ing sequence analysis tasks, including generative, such
as HMMs, or discriminative approaches. Among the
discriminative approaches, kernel-based [14] machine
learning methods provide some of the most accurate re-
sults in many sequence analysis problems [2, 8, 13, 6].

The spectrum kernel methods. The spectrum kernel
methods [8, 6] rely on fixed-length representations or
features Φ(X) of arbitrary long sequences X modeled
as the spectra (|Σ|k-dimensional histogram of counts)
of short substrings (k-mers) contained in X . These
features are subsequently used to define a measure of
similarity, or kernel, K(X,Y ) = Φ(X)TΦ(Y ) be-
tween sequences X,Y . However, computing similar-
ity scores, or kernels, K(X,Y )=Φ(X)TΦ(Y ) using
these representations can be challenging, e.g., efficient
O(km+1|Σ|m(|X| + |Y |)) trie-based mismatch kernel



algorithm [8] strongly depends on the alphabet size and
the number of mismatches m. On the other hand, the
gapped [6] and subsequence [10] kernels that also in-
duce spectrum-like representations have complexity in-
dependent of |Σ|, but quadratic in the sequence length
(subsequence method) or show suboptimal performance
compared to other methods (e.g., mismatch).

Transcription factor identification. Identification of
the repertoire of transcription factors in a given genome
can serve as a starting point for high-throughput exper-
iments aimed at characterizing regulatory networks and
regulation targets. A number of previous studies has fo-
cused on identifying a general class of DNA-binding
proteins (e.g., [12, 9, 5, 1, 4]), which spans a wide
range of proteins including transcription factors, his-
tones, polymerases, nucleases. Most of the methods for
identifying DNA-binding proteins leverage structure-
sequence information. Use of structural information
limits application of the methods to a smaller subset
proteins with resolved structures. In this work, we tar-
get genome-wide identification of transcription factors
using primary sequence information only. We evaluate
performance of our methods on a number of genomes,
and show ability of the trained models to accurately pre-
dict transcription factor repertoire across species on new
(previously unseen) genomes, as well ability to identify
novel (previously unseen) families of TFs.

3. Method

In the following we describe a class of string kernel
methods for TF identification applicable in both super-
vised and semi-supervised learning settings.

3.1. Supervised kernels for TF identification

In the supervised setting, prediction of transcription
factors can be addressed using a general class of predic-
tive models that relies on the similarity metric induced
by the kernel K(·, ·) and computes the matching score
between the query sequence X and the train sequences
{X1, . . . , XN} whose class assignments {y1, . . . , yn}
are known (yi ∈ {−1, 1}). The score is defined as

f(X) =

N∑
i=1

wiK(X,Xi) (1)

with the sign(f(X)) indicating whether the query se-
quence X is a transcription factor, f(X) > 0, or not.
The weights wi are set by training algorithm prior to
making decisions, e.g., by SVM [14].

As one of the defining characteristics of transcrip-
tion factors is the presence of DNA-binding domains,

which have unique structures allowing to interact with
and bind DNA, one can exploit a class of kernels
that have been shown to perform well on the pro-
tein structural classification tasks, e.g., remote homol-
ogy prediction withing SCOP hierarchy [6, 11]. A
large class of sequence kernels K(·, ·) (including spec-
trum/mismatch [7, 8], gapped [6], spatial kernels [3],
etc.) can be written in the following general form

K(X,Y ) =
∑
α∈X

∑
β∈Y

I(α, β) (2)

where I(·, ·) is a matching function (e.g., identity) for
two features α and β. Kernels in this form are essen-
tially equivalent to cumulative comparison of all pairs
of features (α ∈ X , β ∈ Y ).

Features α can be defined as k-mers (i.e. short sub-
strings of length k) as in [6, 8, 7], or as a ordered
sample of short substrings in particular spatial (posi-
tional) arrangement (i.e. α is in the form of a1

d1↔
a2

d2↔, · · · , dt−1←→ at ) as in [3], or as short subsequences
(gapped instances) as in [6].

3.1.1 Kernel computation

Kernels in the form as in Eq. 2 can be computed in two
steps

1. Feature extraction (e.g., extract k-mer features,
spatial samples, etc)

2. Feature counting and kernel computation (Algo-
rithm 1)

While the step 1 is feature-type specific, the second step
can be generalized and is essentially feature-type inde-
pendent. The kernel computation step after feature ex-
traction can be reduced to exact k-mer spectrum kernel
computation using sorting (this is summarized in Algo-
rithm 1). This allows to compute kernel value in lin-
ear time, and apply kernel computations on large scale
(e.g., genome-scale analysis) as we will show in the ex-
periments.
3.2. Semi-Supervised kernels for TF identifica-

tion

While available labeled training data is often scarce,
using readily available large unlabeled data sets can sig-
nificantly improve prediction accuracy (cf. [15, 11]).
One approach to combining unlabeled and labeled data
is a sequence neighborhood approach [15]. For each se-
quence X its neighborhood N(X) consists of a set of
similar sequences obtained by querying unlabeled data
set (e.g. using PSI-BLAST). Then the kernel between
to sequences X and Y is defined (similarly to Eq. 2) as



Table 1. Genome-wide transcription factor prediction (C. Reinhardtii, 15497 seqs)
Method Balanced Error, % ROC50

Supervised
Baseline 1: Sequence composition 42.88 1.06
Baseline 2: PSI-BLAST 45.15 0.61
Mismatch-(k=5,m=1) 24.03 26.04
SK 25.28 26.89

Semi-supervised
Baseline 1: Sequence composition (Plant DB) 36.22 5.64
Baseline 2: Sequence composition (Plant TFDB) 23.43 15.93
Baseline 3: Profile kernel [2] 17.33 62.97
SK (Plant DB) 9.22 67.96
SK (Plat TFDB) 6.71 71.91

Algorithm 1: Kernel Computation
Input: set of N sequences S = {s1, . . . , sN}, kernel

parameters
1: K = 0;
{Step 1: build feature list L}

2: L = ∅;
3: for i = 1, . . . , N do
4: Lsi =

⋃
α∈si(α, i)

5: L = L
⋃
Lsi

6: end for
{Step 2: feature count and kernel computation}

7: Sort feature list L using counting sort
8: Scan sorted list to obtain for each distinct feature α

its counts c(α) = [csi(α)]Ni=1 and update kernel
K = K + c(α)c(α)T

cumulative pairwise comparison between all sequences
in N(X) and N(Y )

K(N(X), N(Y )) =
∑

x∈N(X)

∑
y∈N(Y )

K(x, y), (3)

whereK(x, y) is a kernel between two sequences x and
y (Eq. 2). Algorithm 1 can then be applied to compute 3
by noting thatK(N(X), N(Y )) can be re-written in the
form of Eq. 2 as

∑
α∈N(X)

∑
β∈N(Y ) I(α, β). This ap-

proach, as we show in experiments, results in significant
improvements over supervised settings.

3.3. Advantages of sequence-based TF predic-
tion method

The proposed kernel approach to identifying TFs has
the following advantages:

1. It only requires a sequence information, while
other methods often need other experimental in-
formation such as solved secondary structures, 3D
structures, ontology, functions, etc.

2. It works on full protein sequence (e.g., multi-
domain), i.e. it does not require knowledge of pro-
tein domain.

3. The learned model is applicable to new (previously
unseen) species (see experiments).

4. It can identify TFs with novel DNA-binding do-
mains (see experiments).

4. Experimental evaluation
We evaluate our methods on three tasks testing abil-

ity of the method to (1) identify set of TFs in a given
genome, (2) accurately predict TFs across species (i.e.
for new genomes), (3) detect new (previously unseen)
TF families. We compare with a number of other ap-
proaches including similarity search using PSI-BLAST,
sequence composition, profile method [2]. We test our
methods in both supervised and semi-supervised setting
using a number of sequence databases (NRDB, Plant
DB, Plant TFDB) as unlabeled data. We evaluate per-
formance using balanced error rates, as well as ROC-50
(area under ROC curves up to 50 false positives) scores
to estimate ranking quality.

4.1. Genome-scale transcription factor predic-
tion

We first test our method on the task of genome-wide
prediction of all TFs. We use complete genomes of C.
reinhartdii (15497 seqs), A. lyrata (32670 seqs), and A.
thaliana (35396 seqs) for this task. We use commonly
used sequence composition and PSI-BLAST methods
as baselines. We test in both supervised (genome se-
quences only) setting, and semi-supervised setting by
using non-redundant protein database (NRDB, 0.5 mil-
lion sequences), plant DB (0.9 million sequences), or
plant TF database (∼30K sequences). Tables 1, 2, 3
display 10-fold cross-validation error rates for each of
these genomes. We observe that our method achieves
higher 93-98% accuracy compared to other methods.

4.2. Cross-species TF detection
In this set of experiments, we show ability of the

method to accurately identify repertoire of transcrip-
tion factors in new genomes. We train our method on
a known TF repertoire from one species, and then use
trained model to predict a set of TFs for new (unchar-
acterized) species. We use as examples C. reinhartdii



Table 2. Genome-wide transcription factor prediction (Arabidopsis Lyrata, 32670 seqs)
Method Balanced Error, % ROC50

Supervised
Baseline 1: Sequence composition 41.74 0.83
Baseline 2: PSI-BLAST 25.6 -
SK 8.76 60.71

Semi-supervised
Baseline 1: Sequence composition (Plant DB) 15.93 14.17
Baseline 2: Sequence composition (Plant TFDB) 13.11 20.75
SK (Plant DB) 2.49 74.85
SK (Plant TFDB) 1.81 92.58

Table 4. Across-species transcription factor prediction
Train Test Method Balanced Error, % ROC50
C. Reinhardtii A. lyrata PSI-BLAST 21.67 -
A. lyrata C. Reinhardtii PSI-BLAST 13.09 -
C. Reinhardtii A. lyrata SK (Plant TFDB) 10.08 21.90
A. lyrata C. Reinhardtii SK (Plant TFDB) 6.81 44.83

Table 3. Genome-wide transcription factor
prediction (Arabidopsis Thaliana, 35396
seqs)

Method
Balanced
Error, % ROC50

Baseline 1: Sequence Composition 37.13 4.00
SK 8.13 41.84
SK (Plant TFDB) 7.08 44.75

Table 5. Novel TF detection (C. Rein-
hardtii)

Experiment #experiments Mean Error, %
Hold-one-TF-family out 52 20.1
Hold-two-TF-families out 50 26.39
Hold-three-TF-families out 50 22.57

and A. lyrata species to illustrate trans-species detec-
tion of TFs. As can be seen from results in Table 4, the
method can identify a set of all TFs with 90-93% accu-
racy across species (we note that tested genomes have
low average sequence identity of only 17%).

4.3. Novel TF detection

We simulate detection of transcription factors with
novel DNA-binding domains by holding out TF sam-
ples with specific DNA-binding domain(s). TF samples
belonging to these held-out TF families are then pre-
sented to the model that only contains TF samples from
the remaining “known” TF families. We evaluate novel
TF detection by holding out one, two or three TF fami-
lies and compute average performance (detection accu-
racy) on these held-out families (Table 5). As shown in
the table, average accuracy of detecting novel TF fam-
ilies with previously unseen DNA-binding domains is
around 80%.

5. Conclusions
We presented and evaluated sequence-based meth-

ods for accurate genome-wide transcription factor (TF)
identification. The methods predict with high ( 93-
98%) accuracy TFs for a number of genomes, iden-
tify with 90-93% accuracy TFs in novel genomes, as
well as identify with 80% accuracy new (previously
unseen) TF families. These results show promise in us-
ing presented methods in annotating newly sequenced
genomes.
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[13] S. Sonnenburg, G. Rätsch, and B. Schölkopf. Large scale genomic se-
quence svm classifiers. In ICML ’05: Proceedings of the 22nd interna-
tional conference on Machine learning, pages 848–855, New York, NY,
USA, 2005. ACM Press.

[14] V. N. Vapnik. Statistical Learning Theory. Wiley-Interscience, Septem-
ber 1998.

[15] J. Weston, C. Leslie, E. Ie, D. Zhou, A. Elisseeff, and W. S. Noble.
Semi-supervised protein classification using cluster kernels. Bioinfor-
matics, 21(15):3241–3247, 2005.


