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Abstract

We present a general, simple feature representa-

tion of sequences that allows efficient inexact matching,

comparison and classification of sequential data. This

approach, recently introduced for the problem of bio-

logical sequence classification, exploits a novel multi-

scale representation of strings. The new representation

leads to discovery of very efficient algorithms for string

comparison, independent of the alphabet size. We show

that these algorithms can be generalized to handle a

wide gamut of sequence classification problems in di-

verse domains such as the music and text sequence clas-

sification. The presented algorithms offer low computa-

tional cost and highly scalable implementations across

different application domains. The new method demon-

strates order-of-magnitude running time improvements

over existing state-of-the-art approaches while match-

ing or exceeding their predictive accuracy.

1. Introduction
Analysis of large-scale sequential data has become

an important task in machine learning and pattern

recognition, inspired in part by numerous scientific

and technological applications such as the document

and text classification or the analysis of biological se-

quences. One particular way to analyze sequences is to

consider them as strings of symbols (e.g., words, amino

acid residues, etc.) In such framework, the goal may

be to associate a class, or a label, with a string that has

not been observed before, e.g., assign a topic such as

sports or politics to a string of words (text document),

or functional and structural annotations to a string of

amino acids (protein sequences).

Classification of data in sequential domains is chal-

lenging because of the variability in the sequence

lengths, absence of the readily available pattern/feature

vectors (feature extraction problem), potential existence

of important features on multiple scales, as well as the

size of typical datasets. Discriminative learning meth-

ods that focus on capturing differences among classes

of sequences have shown significant promise [1, 3, 6].

A typical discriminative setting requires that each se-

quence be represented using a fixed-length descrip-

tor. Descriptors, such as the bag-of-words for text or

the spectra of short string fragments for biological se-

quences have gained wide popularity and have led to in-

creasingly accurate sequence classification algorithms.

Recently, [4] introduced a new set of biologically

motivated features to model relationships between func-

tionally similar but content distinct protein sequences.

In this work, we generalize this approach and show

that it leads to a general framework for accurate and

scalable sequence representation. The features repre-

sent sequence data at multiple scales and capture local

fragment dependencies within a string. This represen-

tation has two advantages: a) it models similarity of

sequences under complex transformations and b) it al-

lows efficient and scalable inexact sequence matching.

We also extend the algorithms of [4] and show that they

lead to general fast, alphabet-set independent families

of algorithms for inexact matching of sequences, ap-

plicable to analysis of very large databases under both

fully-supervised and semi-supervised settings.

We demonstrate that the developed approach is ap-

plicable to modeling of sequences in a wide range of

domains, both discrete- and continuous-valued. Exper-

iments using the new features and algorithms on text

document categorization, protein classification, music

and artist recognition show excellent predictive perfor-

mance and significant improvements in running time

over the existing state-of-the-art methods on these large

alphabet, large sequence datasets.

2. Background

A number of state-of-the-art approaches to classi-

fication of sequences over finite alphabet Σ rely on

fixed-length representations Φ(X) of sequences as the

spectra (|Σ|k-dimensional histogram) of counts of short

substrings (k-mers), contained, possibly with up to m

mismatches, in a sequence, c.f., spectrum/mismatch

methods [5, 6, 3]. However, computing similarity

scores, or kernels, K(X, Y )=Φ(X)T Φ(Y ) using these

representations can be challenging. E.g., efficient

O(km+1|Σ|m(|X| + |Y |)) trie-based mismatch kernel

algorithm [6] strongly depends on the alphabet size and

the number of mismatches m. On the other hand, the

gapped [5] and subsequence [8] kernels have complex-

ity independent of |Σ|, but quadratic in the sequence

length (subsequence method) or show suboptimal per-

formance compared to other methods (e.g., mismatch).



3. Spatial Representation of Sequences

In this section, we describe a general sequence clas-

sification framework that embeds the observed one-

dimensional sequences into a richer, high-dimensional

feature space where inexact string matching and com-

parison can be performed more efficiently.

Evaluation under spatial representation amounts to

sampling the sequence features at different resolutions

and comparing the resulting spectra; similar sequences

will have similar spectra at one or more resolutions.

Each sampled spatial feature consists of t substrings of

length k, with each substring no more than d positions

away from its neighbors. We illustrate the spatial fea-

tures in Figure 1(a). The upper panel shows a typical

contiguous spectrum 6-mer and the lower panel shows

how a spatial sample method with k=2,t=3 would ex-

tract features from the string. Much like the spectrum

features, the spatial feature ”AR ND CQ“ shown has

the value proportional to the number of times it occurs

in string X .

Spectrum/mismatch representations rely on contigu-

ous string fragments of length k. On the other hand,

the spatial representation is multi-dimensional, made of

variably distanced string fragment combinations (Fig-

ure 1(b)). In the figure, we show a spatial embedding

(t = 2) with string fragments as single symbols (k=1)

displaced by d (e.g., row ”AA“ and column d = 2
shows number of occurrences of ”A A“).

This multi-resolution representation allows to more

efficiently compute sequence similarity under substitu-

tion, insertion, and deletion without explicitly induc-

ing a mutational neighborhood as in mismatch/profile

methods [6, 3]. It also captures short-term dependen-

cies among the individual local k-mers by including

their spatial configuration.

In Sec. 4, and 4.1, extending the methods in [4], we

will develop two very efficient algorithms for comput-

ing spatial feature similarity (kernels) of the form

K(t,k,d)(X, Y ) =∑

ai∈Σk,0≤di<d

CX(a1, d1, · · · , at−1, dt−1, at)·
CY (a1, d1, · · · , at−1, dt−1, at)

,(1)

where CX(a1, d1, · · · , at−1, dt−1, at) is the number of

times the spatial feature a1
d1↔ a2

d2↔, · · · ,
dt−1
←→ at (a1

separated from a2 by d1 sequence elements, a2 sepa-

rated by d2 elements from a3, etc.) is observed in X .

We refer to specific cases (t = 2, k, d) and (t = 3, k, d)

as double(k,d) and triple(k,d).

4. Algorithms for Spatial Feature Similarity

Evaluation
High-dimensionality of feature spaces for large |Σ|

necessitates development of efficient algorithms for

evaluating feature-based similarity between pairs of

strings. Sequence matching under spatial representa-

tion (Eq. 1) can be efficiently computed using sorting

and counting (Algorithm 1) in linear time, and inde-

pendent of the alphabet size, despite potentially very

large feature space O(dt−1|Σ|k). In the algorithm, spa-

tial features (k, t, d) extracted from the input (step 3)

are sorted in linear time using t rounds of counting sort

(step 5) to group same features together so that feature

counts for the input strings can be obtained in one pass

over the sequence index associated with the features

(step 6). Similar to the gapped [5] and subsequence [8]

kernels, Algorithm 1 is independent of the alphabet set

size |Σ|, however it is linear in the sequence length

O(ck,t,dn), while the subsequence kernels are quadratic

in the length of the sequence.
Algorithm 1: String Matching under Spatial Em-

bedding

Input: set of strings S = {s1, . . . , sN}, parameters k, t, d (in our

applications, k = 1, t ≤ 3, d ≤ 5)

1: K = 0

2: for all (d1, . . . , dt−1), 0 ≤ di < d do

3: Construct the complete set of features L =

N
[

i=1

Lsi
, Lsi

is

the set of spatial features (k, t, d) from si, with each feature

containing the index of its corresponding sequence

4: Obtain a permutation πL that lexicographically orders L

using t rounds of counting sort

5: Obtain counts c(f, si), i = 1, . . . , N for each distinct

feature f in LπL
in a single pass over the list and update

kernel K = K + c(f)c(f)T , c(f) = {c(f, si)}
N

i=1

6: end for

4.1. Efficient Semi-supervised Kernel Algo-
rithm

Our spatial representation can also exploit the unla-

beled data using the sequence neighborhood approach,

which was shown to be effective for mismatch kernels

in [11]. In that approach, sets N(X) of unlabeled se-

quences neighboring X are used to obtain neighbor-

hood kernel measure from smoothed features,

Φnbhd(X)= 1
|N(X)|

P

X′∈N(X) Φorig(X′), (2)

Knbhd(X,Y )=

P

X′∈N(X),Y ′∈N(Y )
K(X′,Y ′)

|N(X)||N(Y )|
. (3)

While Eq. 3 and Eq. 2 require either quadratic num-

ber of kernel evaluations or explicit feature represen-

tations Φ(X), we observe that Algorithm 1 can eval-

uate the neighborhood kernel more efficiently without

requiring explicit representations Φ(X) since the ker-

nel (Eq. 3) can be re-written similar to Eq. 1 as

Knbhd(X,Y )=
P

CN(X)(a1,d1,...,dt−1,at)·

CN(Y )(a1,d1,...,dt−1,at), (4)

thus reducing the neighborhood kernel computation to

that of computing kernel as in Algorithm 1 (with X

replaced by a set of strings N(X)). Using the above

algorithms allows to very efficiently compute kernels

on large databases and very high-dimensional spaces

(Sec. 5).



(a) (b)
Figure 1. Left: Contiguous k-mer feature α of a traditional spectrum feature (top) contrasted

with the spatial samples (bottom). Right: The multi-dimensional spatial sample embedding.

5 Experimental Results

We test proposed methods on four distinct multi-

class sequence classification tasks1: (1) text document

categorization, (2) music genre classification2, (3) artist

identification, and (4) multi-class protein fold predic-

tion. We display results for best choice of d among

double(1, d) and triple(1, d) (typically double(1,5) and

triple(1,3)) and SVM classifier3 with default parame-

ters. Gapped/subsequence kernels use similar settings

(e.g., k=3, at most g=4 gaps). In the results, top-n error

or F1 evaluate whether the correct class is in the top n

class predictions. We give running time comparisons in

Section 5.5.

5.1. Text Classification

We use a benchmark Reuters-21578 data set4 for the

experiments on text categorization. The word alphabet

after standard preprocessing contains |Σ|=29, 224 dis-

tinct words. The double(1,5) kernel in word-feature

space (doubles of words displaced by d other words)

improves over other state-of-the-art methods (n-gram,

subsequence, TF-IDF word kernels, KSG [12]), tuned

and designed specifically for text categorization (Ta-

ble 1). KSG [12] often displays performance simi-

lar to our approach, but uses significantly more intri-

cate grouping of substrings into key groups (based on,

e.g., the maximum parent-child conditional probability

in suffix tree decomposition, etc.)

Furthermore, it is important to note that even for the

large alphabet set (|Σ|=29, 224) a 8986-by-8986 docu-

ment similarity matrix for the double(1,5) kernel takes

only 16 seconds to compute on a 2.8GHz CPU.

5.2. Music Genre Classification

Music genre recognition is a particularly interesting

problem in our setting because music data is originally

continuous-valued and string representations (in the ab-

sence of musical notation) may require a large alphabet.

On a standard benchmark dataset [7] (10 genres,

each 100 audio sequences, quantized into strings with

1Datasets and code used in our experiments are made available

at http://paul.rutgers.edu/˜pkuksa/large-scale/

large-scale.htm
2http://opihi.cs.uvic.ca/sound/genres
3http://www.kyb.tuebingen.mpg.de/bs/people/spider/
4http://www.daviddlewis.com/resources/testcollections/reuters21578/

Table 1. Test F1 scores on top Reuters

categories. Spatial features improve over

baseline and state-of-the-art methods.
Class TF-IDF KSG Double SS-4† NG-4‡

Earn 98.70 98.3 98.76 97.0 98.40

Acq 97.11 96.8 97.68 88.0 93.20

Money 77.61 84.0 83.71 76.0 75.70

Grain 93.29 92.5 93.38 84.0 84.0

Crude 87.71 89.4 90.51 84.0 84.80

Trade 84.26 90.2 91.23 73.0 77.90

Interest 71.80 81.5 81.15 66.0 71.90

Wheat 80.00 81.8 80.92 79.7 79.0

Ship 72.97 81.9 84.39 65.0 62.60

Corn 81.63 87.1 83.33 63.0 61.0

Macro-average 84.51 88.3 88.51 77.57 78.80

Micro-average 93.18 93.9 94.39 - -

KSG=key-substring-group features [12]
†approximate subsequence kernel [8], ‡N -gram character kernel [8]

Table 2. Music genre classification.
# Genre DWCH† Double(1,5) gapped(4,2)

1 Blues 95.49 (1.27) 93.6 (4.77) 93.8 (2.33)

2 Classical 98.89 (1.1) 95.6 (1.35) 97.2 (1.04)

3 Country 94.29 (2.49) 94.3 (2.21) 91.7 (2.02)

4 Disco 92.69 (2.54) 94.3 (1.41) 91.9 (1.14)

5 Jazz 97.9 (0.99) 95.5 (2.27) 93.4 (1.29)

6 Metal 95.29 (2.18) 94.7 (1.42) 94.0 (2.37)

7 Pop 95.8 (1.69) 96.2 (1.75) 95.5 (1.32)

8 Hiphop 96.49 (1.28) 97.1 (0.99) 94.8 (1.25)

9 Reggae 92.3 (2.49) 95.5 (1.58) 92.3 (2.02)

10 Rock 91.29 (2.96) 95.1 (1.66) 91.7 (1.52)

Mean 95.04 95.19 93.63
†: DWCH=Daubechies Wavelet Coefficient Histograms [7]

|Σ| = 1024) our method achieves better overall per-

formance (Table 2, 10-fold cross-validation) compared

to the gapped(4,2) kernel, and the DWCH method [7],

an approach specifically developed for music classifica-

tion. This is achieved using very simple MFCC features

that capture only local information in the music signals.

In contrast, the DWCH method uses more sophisticated

features with both local and global information. Com-

pared to the gapped kernel with no spatial information,

our method achieves better performance in eight out of

ten genres. Both of these facts point to importance of

considering longer-term spatial relationships in music

signals for genre prediction. Similar conclusion carries

over to a multi-class setting, Table 3, The raw MFCC

features achieve 41.6±3.31 error rate [7]. Our double

kernel that incorporates longer-term dependency (using

d=5) improves the error significantly to 29.2± 1.61.

Table 3. Multi-class music genre classification
method Error Top-2 Error F1 Top-2 F1

gapped 34.5±2.6 19.9±2.27 65.35 80.31

double 29.2±1.61 17.5±1.77 70.82 82.62

triple 29.3±1.86 17.3±1.89 70.61 82.78



5.3. Artist recognition

We also illustrate the utility of our generic string fea-

tures on multi-class artist identification on a standard

artist20 dataset5 with 20 artists, 6 albums each. Ta-

ble 4 lists results for 6-fold album-wise cross-validation

with one album per artist held out for testing. Us-

ing spatial information with quantized MFCC features

(|Σ| = 1024) yields 32.5% error compared to 44% us-

ing MFCC features alone [2], indicating that our spa-

tial features may be well suited for this task, especially

when coupled with more domain-specific information.

Table 4. Artist recognition performance
method Error Top-2 Error F1 Top-2 F1

gapped 44.66 32.24 55.33 67.99

double 32.50 21.51 67.56 78.63

triple 32.69 21.15 67.43 78.67

5.4. Multi-class protein fold prediction
Protein fold prediction is a difficult task in biolog-

ical sequence classification where one aims to predict

a complex, high-level protein category, using only the

primary sequence information. The fold recognition

benefits from large unlabeled datasets that “link” other-

wise only remotely similar sequences in the same fold

c.f., [11]. We use the non-redundant (NR) sequence

database with 534,936 unlabeled sequences to compute

neighborhood kernel (see Sec. 4.1).
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Figure 2. Ranking quality for multi-class

protein remote fold recognition (top-n bal-

anced error rates). Spatial kernels im-

prove over the profile kernel.

On a benchmark multi-class fold recognition

dataset [9] (26 folds), we observe significantly lower

error rates (Figure 2) than the state-of-art profile ker-

nel [9], e.g., top-3 error is almost 50% smaller. One

reason for this may be the use of the multi-scale spatial

representation, which matches what some biologists be-

lieve to be ”critical position” fragments in proteins [10].

5.5. Running time

One important benefit of our approach lies in the

computational efficiency of evaluating similarity of se-

quences (kernel values). As shown in Table 5, both dou-

5http://labrosa.ee.columbia.edu/projects/artistid/

ble and triple kernels demonstrate order of magnitude

running time improvements over other algorithms.

Table 5. Running time (s) for kernel com-

putation between two strings on real data
protein (semi-sup) protein text music

n, |Σ| 36672, 20 116, 20 242, 29224 6892, 1024

(5,1)-mismatch 1.6268 2.82e-02 20398 526.8

subseq. (p=3) 1222.4 3.27e-02 0.4846 2.4321

double 0.1155 9e-04 3.6e-03 1.37e-02

triple 0.1967 2.5e-03 7.5e-03 3.45e-02

*n-sequence length, |Σ|-alphabet size

6. Conclusion
We present a general approach for sequence classi-

fication based on a multi-dimensional embedding that

permits rapid and accurate sequence matching, com-

parison, and classification. The algorithms we pro-

pose are scalable (for large datasets and long sequences)

with complexity independent of the alphabet size. We

study our method in three different domains. It achieves

state-of-the-art performance in text classification, offers

significant improvements for music genre classification

and artist identification, and as well as protein fold pre-

diction. We also show that our method can readily lever-

age unlabeled data and work with very large databases.

As a consequence, the same approach may be applica-

ble to other challenging problems on large corpora, e.g.,

web document classification or literature mining.
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