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Abstract

In this work we present a new string similarity fea-

ture, the sparse spatial sample (SSS). An SSS is a set of

short substrings at specific spatial displacements con-

tained in the original string. Using this feature we in-

duce the SSS kernel (SSSK) which measures the agree-

ment in the SSS content between pairs of strings. The

SSSK yields better prediction performance at substan-

tially reduced computational cost than existing algo-

rithms for sequence classification tasks. We show that

on the task of predicting the functional and structural

classes of proteins, the SSSK results in state-of-the-art

performance across several benchmark sets in both su-

pervised and semi-supervised learning settings. The re-

sults have immediate practical value for accurate pro-

tein superfamily and fold classification and may be sim-

ilarly extended to other sequence modeling domains.

1 Introduction

Structural or functional classification of proteins is

a fundamental problem in computational biology. With

more than 61 million sequences in GenBank [3] and 5.3

million unannotated sequences in UNIPROT [2], ex-

perimental elucidation of an unknown protein function

becomes expensive, making development of computa-

tional aids for sequence annotation based on primary

sequences only a critical and timely task. In this work,

we focus on the problem of predicting protein remote

homology (superfamily) and fold using the primary se-

quence information.

Developments in computationally-aided protein

functional or structural annotation in the past decade

have witnessed the benefit of discriminative model-

ing methods that outperform traditional generative se-

quence models. In the generative model setting, the

goal is to capture the commonly shared characteristics

within the group, or class, using only positive train-

ing examples. Examples of methods that operate under

this setting are PSI-BLAST [1], profiles [6], and pro-

file hidden Markov models (profile HMMs) [5]. How-

ever, the shared characteristics may also be present

in other groups of interest, and therefore may lead to

sub-optimal classification accuracy. The discriminative

models, on the other hand, focus on capturing the differ-

ences between groups using both positive and negative

examples. The discriminative method such as kernel-

based [16] machine learning methods provide some of

the most accurate results [9, 11, 15] in many sequence

analysis tasks. Jaakkola et al. proposed the SVMFisher

in [8] with features derived from a probabilistic model.

Leslie et al. in [11] proposed a class of kernel methods

that operate directly on strings and derive features from

the sequence content. Both classes of kernels demon-

strated improved discriminative power over generative

methods.

In this study we propose the sparse spatial sam-

ple (SSS) features and induce a new family of sparse

spatial sample kernels (SSSK) for sequence analysis

tasks. The proposed kernels explicitly model biological

transformations such as mutation, insertion and dele-

tion while incurring low computation cost, compared to

other state-of-the-art methods. In contrast to the exist-

ing string kernels, the SSSK provide a richer represen-

tation for sequences by explicitly encoding the infor-

mation on spatial configuration of features within the

sequence. The proposed methods perform significantly

better and run substantially faster than existing state-of-

the-art algorithms, including the profile [9] and neigh-

borhood mismatch [17] kernels.



2 The Sparse Spatial Sample Features

and Kernels

We define the family of SSS features as the sub-

strings of type a1
d1↔ a2,

d2↔, · · · , dt−1←→ at (a1 separated

by d1 characters from a2, a2 separated by d2 characters

from a3, etc.) contained in sequence X . This is illus-

trated in Figure 1. The kernel SSSK is then induced by
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Figure 1. The SSS feature.

matching the cumulative (spectral) SSS content of two

sequences X and Y . Parametrized by three positive in-

tegers, the proposed family of kernels has the following

form:

K(t,k,d)(X, Y ) =
∑

(a1,d1,...,dt−1,at)

ai∈Σk,0≤di<d

C(a1, d1, · · · , at−1, dt−1, at|X)·
C(a1, d1, · · · , at−1, dt−1, at|Y )

,(1)

where C(a1, d1, · · · , at−1, dt−1, at|X) denotes the

number of times we observe the particular SSS feature

in sequence X .

The new kernel implements the idea of sampling

the sequences at different resolutions and compar-

ing the resulting spectra; similar sequences will have

similar spectrum at one or more resolutions. This

takes into account possible mutations, as well as in-

sertions/deletions. Each sample consists of t spatially-

constrained probes of size k, each of which lie no more

than d positions away from its neighboring probes. In

the proposed kernels, the parameter k controls the in-

dividual probe size, d controls the locality of the sam-

ple, and t controls the cardinality of the sampling neigh-

borhood. In this work, we use short samples of size 1

(i.e., k = 1), and set t to 2 (i.e. features are pairs of

monomers) or 3 (i.e. features are triples.)

The proposed sample string kernels, not only take

into account feature counts (as in the family of spec-

trum [11] or gapped/subsequence [10, 14] kernels), but

also explicitly encode spatial configuration information,

i.e. how the features are positioned in the sequence.

The spatial information can be critical in establishing

similarity of sequences under complex transformations

such as the evolutionary processes in protein sequences.

The addition of the spatial information experimentally

demonstrates very good performance, even with very

short sequence features (i.e. k=1), as we will show in

Section 3.

3 Experimental Results

We present experimental results for the protein re-

mote homology (superfamily) prediction under the su-

pervised and semi-supervised settings on the SCOP [13]

dataset in Section 3.1 and the results for remote fold

recognition in Section 3.2. In all experiments, all ker-

nel values K(X, Y ) are normalized using K ′(X, Y ) =
K(X,Y )√

K(X,X)K(Y,Y )
to remove the dependency between

the kernel value and the sequence length.

3.1 Remote homology detection

We perform our experiments for remote homology

detection on a widely used benchmark SCOP 1.59

dataset [17, 9], which contains 7, 329 protein sequences

and 54 binary classification problems, each simulating

protein remote homology detection by completely hold-

ing out one family in a superfamily for testing. Only

2, 862 domains out of 7, 329 are labeled, which allows

to perform experiments in both supervised and semi-

supervised (labeled and unlabeled sequences) settings.

We evaluate all methods using the Receiver Operat-

ing Characteristic (ROC) and ROC-50 [7] scores. The

ROC-50 score is the (normalized) area under the ROC

curve computed for up to 50 false positives. With a

small number of positive test sequences and a large

number of negative test sequences, the ROC-50 score

is typically more indicative of the prediction accuracy

of a homology detection method than the ROC score.

In the semi-supervised experiments, we use kernel

smoothing as in [17]. For each sequence X , we query

the unlabeled dataset with PSI-BLAST and recruit the

sequences with e-values ≤ 0.05 as the neighbors of X .

Supervised setting: We compare the performance of

our proposed methods with previously published state-

of-the-art methods [12, 11] under the supervised learn-

ing setting in Table 1. We also show the dimensionality

of the induced features and the observed experimental

running times, measured on a 2.8GHz CPU, for con-

structing the 7329x7329 kernel matrix1. It is clear from

the table that the proposed kernels not only show sig-

nificantly better performance than existing methods, but

also require substantially less computational time. Also,

as can be seen from the comparison with the gapped

kernels, the addition of the spatial information substan-

tially improves the classification performance.

We also show the ROC-50 plot in Figure 2(a). In

the plot, the horizontal axis corresponds to the ROC-50

1The code used for evaluation of the competing methods has been

highly optimized to perform on par or better than the published spec-

trum/mismatch code. We also used the code provided by the authors

of the competing methods.



scores and the vertical axis denotes the number of ex-

periments, out of 54, with an equivalent or higher ROC-

50 score. Our results clearly indicate that both double

and triple kernels dominate the mismatch(5,1) kernel,

as well as other supervised methods.

Table 1. Comparison of the performance

under the supervised setting.

Method ROC ROC50 # dim. Time (s)

(5, 1)-mismatch 0.8749 0.4167 3200000 938

SVM-pairwise [12] 0.8930 0.4340 - -

gapped(6,2) [10] 0.8296 0.3316 400 55

gapped(7,3) 0.8540 0.3953 8000 297

subsequence-2 [14] 0.8581 0.3583 400 133

subsequence-3 0.8723 0.4037 8000 1543

(1,5) double 0.8901 0.4629 2000 54

(1,3) triple 0.9148 0.5118 72000 112
Parameters of kernels in parenthesis indicate: the probe size (k) and

the maximum distance between adjacent samples for the double and

triple kernels; the length of the contiguous k-mer and the maximum

number of mismatches for the mismatch kernel; the maximum

window size and the length of the k-mer for the gapped kernels.

Table 2. Comparison of the performance

under the semi-supervised setting.

Method ROC ROC50

(5, 1)-mismatch neighborhood 0.9093 0.6745

(5,7.5)-profile 0.9190 0.6069

(1,5)-double neighborhood 0.9282 0.6383

(1,3)-triple neighborhood 0.9382 0.7262

Table 3. Comparison on Ding and

Dubchak benchmark data set

Method Error
Top 5

Error

Balanced

Error

Top 5

Balanced

Error

SVM(D&D) [4] - - 56.5 -

Mismatch(5,1) 51.17 22.72 53.22 28.86

Double(1,5) 44.13 23.50 46.19 23.92

Triple (1,3) 41.51 18.54 44.99 21.09

Semi-supervised setting: We compare the perfor-

mance on the same data set in Table 2 and in Figure 2(b)

under the semi-supervised setting. The triple neigh-

borhood kernel outperforms both the profile kernel and

the mismatch neighborhood kernel, the state-of-the-art

classifiers reported in previous studies [9, 17].

3.2 Remote fold recognition

For the fold recognition task, we use a challeng-

ing dataset designed by Ding et al. 2 in [4], a bench-

mark used in many studies. The data set contains se-

quences from 27 folds divided into two independent

sets, with the training and test sequences sharing less

than 35% sequence identities and within the training set,

no sequences share more than 40% sequence identities.

We compare the performance of our methods under su-

pervised setting with previously published methods on

Ding and Dubchak benchmark data set in Table 3. Our

spatial kernels achieve higher performance compared to

the state-of-the-art classifiers.

4 Discussion

Our family of kernels posses clear computational ad-

vantages over most existing methods. We next outline

these advantages and point to a possible biological sig-

nificance of the proposed SSS features.

Complexity Comparison: Both mismatch and pro-

file kernels have higher complexity compared to the

sample kernels. The total complexity for a set of N se-

quences of length n is O(dnN + min(u, dn)N2) for

doubles and O(d2nN + min(u, d2n)N2) for triples,

where u is the number of unique features. This

can be significantly lower than the exponential com-

plexity of the mismatch kernel O(km+1|Σ|mnN +
min(u′, n)N2), where u′ ≤ |Σ|k, k = 5, 6, and Σ is

the alphabet set. This complexity difference leads to

order-of-magnitude improvements in the running times

of the sample kernels over the mismatch and profile ker-

nels.

Biological Motivation: Compared to mis-

match/profile kernels, the feature sets induced by

our kernels cover segments of variable length (for

example, 2-6 residues for the double-(1, 5) kernel),

whereas the mismatch and profile kernels cover con-

tiguous fixed-length segments (e.g., 5 or 6 residues).

The proposed features also capture short-term de-

pendencies and interactions between local sequence

features by explicitly encoding spatial information;

in contrast, such information is not present in the

gapped/subsequence kernels. As shown by our

experiments in Table 1, the spatial information is

crucial for accurate sequence classification (e.g. the

gapped/subsequence kernels based on 2- and 3-mers

show substantially lower classification performance).

2http://ranger.uta.edu/∼chqding/bioinfo.html
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(a) SCOP dataset. Supervised setting.
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(b) SCOP dataset. Semi-supervised setting

Figure 2. Comparison of the performance (ROC50) in a supervised setting (left) and in a semi-

supervised setting (right) using SCOP 1.59 as the unlabeled dataset.

5 Conclusion

We present a new family of sparse spatial string

features and kernels demonstrating state-of-the-art per-

formance on protein remote homology and fold pre-

diction, two important tasks in computational biology.

The proposed methods have low computational cost

and yield significantly improved homology and fold

detection performance compared to other state-of-the-

art approaches. The key component of the method is

the spatially-constrained sample kernel for efficient se-

quence comparison leading to fast and accurate remote

homology and fold detection. The proposed methodol-

ogy can be applied to other challenging problems in se-

quence analysis, such as the text modeling, music clas-

sification, etc.
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