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Abstract: A health care workflow application may need to know

In this work we describe and evaluate an approach to ¥hich rooms are occupied. A data center application may
curately infer the position in a building where human mé@ute work away from regions of a building where it de-
tion occurs. Our approach does not require the humdf&tS human motion in order to reduce the chance of an
to wear any type of device. Such passive mobility kp_perator—md_u_ced fault. _In all these domains, localizing
calization is applicable in a wide variety of applicatiofUmMan mobility would give developers a new and power-
domains, including those in security, human workflowgfl set of tools towards realizing these emerging applica-
and systems management. We position human motion fiQns.

ing the change in standard deviation of the received slg-this work we explore the use of inexpensive commer-
nal strength between stationary transmitters and receiveal off the shelf (COTS) wireless technologies to pas-
at known locations. Using a modest transmission ratesifely estimate the location of human motion in indoor
once per second, we localize the motion at 2-5 secoenironments. Our approach centers around first detect-
timescales using a lines-intersecting-tiles method whémg motion, and then returning an area constraining the
each line is a straight path between a transmitter and lazation. We are able to perform motion detection and
ceiver. Our algorithm returns a set of rectangular tiléscalization in real-time, using no offline training, a rela
where the motion has occurred. We experimentally vaively low density of tags, and generate results with mod-
idate our scheme in two different building environmentsst geometric error in location estimation.

one containing a cluttered space and a second Wlt_h aMBffen, both cost and privacy motivate using a wireless
open arrangement. We show good results for basic mol,-oach.  Other motion detection modalities, such as
ity detection, with a low number of false positives angdyneras, ultrasound, IR, and lasers, are limited by line-
negatives. We show that we can localize human motigfgight (LOS). In many building environments, the LOS
with a median error of less than 20 ft. We can achi€yitation thus requires deployment of a large number of
these results with a modest density of inexpensive actiygsors. A second issue with cameras is that the potential
RFID tags, one per 500 ft. We also explored how ourt, misyse and the resulting privacy violations are often
resu!ts degrade with reduced _c_iensny of_transm|tters %g high a risk for many users. Our approach estimates
receivers, and show our mobility detection rates remajfl, hqsitions where mobility occurs by observing chang-
good although the geometric precision of the results q&g radio signals caused by human motion. Because the
grades in line with the density of transmitters. frequencies used in COTS wireless devices pass through
common construction materials, our approach does not
. suffer from LOS limitations. In addition, by utilizing
1 Introduction technologies that do not necessitate recording personal or
private information about the users, we avoid many pri-
Passive motion detection, that is, detecting mobility of olsacy issues raised by indoor tracking systems that utilize
jects with no attached wireless devices, and the localizameras or other sensors that capture user information.

tion of such motion, are key enablers of applications &gnal propagation theory predicts mobility detection
areas including security, inventory control, energy maghoyld be an easier problem than static localization, and
agement, and human workflow analysis. For example, @ work demonstrates systems built with mobility as
energy management application might need the long (%8 primary detection event provide near perfect recall

human movement patterns in order to make scheduliggy precision, as well as obtain good localization perfor-
decisions about which parts of building to heat and cool.



mance in multiple environments with zero training. Owvell as show that our algorithms are tractable to run on
approach is to deploy low cost active RFID tags and readedest hardware in real time.

ers at known |ocations, and then reason about mobilfy, 5150 investigated the ability to disambiguate multiple
from changes in the standard deviatiar) 6f the signal g taneous motion locations. In these experiments, we
strength. Our geometric approach then provides a sey,gfy myitiple people walking in a building and attempt to
rectangular tiles where mobility has likely occurred frorHistinguish between each motion event. We found the
a global set of overlapping tiles spanning the entire Spgese getection results unchanged, and the geometric ac-
being monitored. We use a very simple approximatioy acy and precision of our approach degraded only by
of signal propagation: the highest-weighted regions calite,y feet, making our approach robust to a handful of

taining mobility are computed from the weighted sums Qfryitaneous events; we leave a study investigating the
the straight line paths between transmitters and rece“’?&ﬁlability of simultaneous events as future work.
over the tile. Although propagation theory predicts more

elliptical shapes [6], we found straight line paths an az__he remainder of this paper is organized as follows. Sec-

ceptable approximation, and these also greatly simplH§ 2 covers some background on signal propagation and
the algorithm so it is realizable in real-time. rélated work. Section 3 then describes the detection and

] ] . localization algorithms. Next, Section 4 documents the
This enables a large spatial coverage with a less expgga racy, precision, latency, and geometric accuracy of

sive infrastructure. 'T.he trade off of.this ap.proa}ch isinthe . approach in two different office environments for sin-
accuracy and precision of the motion estimation, though, 5ng multiple motion events. Finally, in Section 5 we
in this work we show we can achieve near perfect motiQQ ¢ |ude.

detection and localize the motion to within 20 ft., which
is sufficient for many applications.

We perform direct experiments on a deployed system tfzit Backgr ound and Related Wor k
provides real-time results, as opposed to using a trace-

driven algorithmic approach or simulation. We show re-

sults in two different office buildings, one with an averAur Work_is founded on twp well tested ideas from signal
age tag density 1 per 250%t.and a second with a tag_propagatlon theory. The first concerns how to character-

every 500 f2. The base station density was also reli€ the multipath environment, and the second how people
tively modest, about 1/550 #t\We also show our resultsimpact the received signal in such an environment. The

with a reduced tag densities of 1 per 756.ftThe two key theoretical result we leverage from prior signal prop-

buildings used as experimental spaces were office erfgation work is that the variance in response to human

ronments, one approximately 17,000 fand the other motion should be significantly higher than the variance
approximéltely 12.000 . We perfo,rmed experiments inresulting from noise. A second less used result is that the

volving 1, 2 and 3 persons actively walking through trignal’s dominaht component i; most often a straight line
areas and attempting to detect and localize the actors. 7O the transmitter to the receiver [6]. A key result from
our work is that simple, intuitive application of these re-

Because we used a live system in buildings actively usggs is sufficient for mobility detection and localization
for research and business, our layout was irregular, |8femains an open question if, and by how much, more

we did not have access to all areas. We found that @nplex models will improve the geometric bounds pro-
an average density of 1 transmitter per 758 &.single vided by our approach.

'blind spot’ significantly impacted the results. Although

the blind spots could be addressed with a careful layout,

this would require much more post-deployment testing.q Background
We also found the geometry of detection improved as both

the density increases and the latency incredseslow- \odeling the received signal strength (RSS) in indoor en-
ing events to be detected after a few seconds), althoygiynments is challenging task because of many effects on
the gains were somewhat modest as the density doublggdradio waveform. These include shadowing,block-
from 1 tag/500 ft to 1/250 ft2. ing a signal; reflectioni.e. waves bouncing off an ob-
We found that the detection latency was on the orderjett; diffraction,i.e. waves spreading in response to ob-
a few seconds. Even with the modest beacon intervalssficles; and refraction,e. waves bending as they pass
1/s, we can detect relatively short motion events with Igrough different mediums. From a system perspective,
tencies of 2-5 seconds. We anticipated that latency wotiie¢ modeling challenge is not to provide absolute accu-
have a significant effect on the performance of the systéagey, but rather to find a model that balances accuracy,
due to the 1 second beacon frequency and other netwg@kerality, computational complexity and parameter ob-
or hardware-related delays. A key result of using diregervability for the task at hand.

experiments is that we validated these low latencies, |@fas been empirically demonstrated in numerous studies



thatindoor signal power distributions are typically Ritia readings from a Wireless LAN [8]. They used a variance
Such distributions model environments where a few dotineshold to declare that a device is moving or stationary.
inant paths compose the received signal. This standffith three access points (APs) and a sliding window of
contrast to Rayleigh environments, where a received sgige five samples per AP, they got five percent false pos-
nal is composed of many uncorrelated components. Titiges and about ten percent false negatives. Muthukrish-
important result we draw on from the Rician models isanet al. also presented a motion detection algorithm that
that a change in a few components will have compansas based on the spectral analysis of WLAN radio signal
tively large effects compared to noise. Thus, the resudtrengths by employing Fast Fourier Transform [2, 3]. A
ing stochastic process will have a high variance, even ovo-state classification scheme was used to deduce if a
short timescales. A second result from previous modeker is moving or still with an average classification ac-
ing efforts is that the impact of objects impacts the field curacy of 94%. Patwari and Kasera proposed a location
the LOS between a transmitter and receiver [6]. Althouglistinction mechanism that used a physical layer charac-
more complex geometries, e.g. modeling the multipatristic of the radio channel, called temporal link signa-
components as ellipses rather than rays [6], or modelinge, between a transmitter and a receiver to detect when
ground effects [12] could be used, we found that sude transmitter or receiver changed position [5]. Finally,
complexity did not deliver much benefit over modelinking et al. explored the use of mobile sensors to address
the propagation using straight lines. the limitation of wireless sensors networks for target de-
tection [10]. Target detection relies on sensing changes in
the energy of signals emitted by targets.

The ability to passively localize humans has been recently
proached by several groups. Seifeldin and Youssef, for
cample, first use an offline training phase, and then ap-
y a matching approach based on Bayes' rule [7]. Their
atching approach has its roots in machine learning, and

s unlike our geometric approach which is more an ap-

2.2 Reated Work

One of the first works to articulate the area of passive
tection was by Youssedt al. [11]. Using terminology |
from that work, we focus on detection and tracking. Hov{?ﬁ
ever, our work expands on those definitions by maki%

mobility itself a detection event, as opposed to object roximation founded on signal propagation. Our results

LZ(I:.UO?' MOS; Othfrrl worksl gsi;u:ne (iete;:t;pnstemc Ibq- tshow that for the mobility detection problem the signal
A |za|or;,v|v eref ??03 IS IS oca el_s at_long_ryo_ Jec ﬁ1aps are sufficiently simple that machine learning ap-
second class of related works examiiaeationdiscrim: > o oo o required.

ination, which determines if an object has changed po§1
tions [13]. All three are distinct problems. As the fieldR@dio tomographic imaging seeks to localize object in
is still relatively new, there are still few formal problenth€ environment using the signal properties. Two recent
definitions and accepted operating regimes for those pri§ks take this step to the logical conclusion of trying
lems. Note that mobility detection and location discrin{® Mmap a human body using wireless networks [4, 6, 9].
ination are easy problems if we had a static localizatiédthough our localization could be viewed as an approxi-
system with zero error that operated with zero latency aftion of tomographic imaging, it is important to realize
with an infinitely small time granularity. However, giverfhe end goals are much different: we seek only to return a

the current state of the art, mobility detection and logatisufficiently constrained area for an event rather than build
discrimination are useful. a model of the object(s) contained in a space, making our

modeling and algorithms much simpler. Also, a second
K 97 difference arising from the different goals is that the
ployment densities and regularity needed for the motion
letection and localization problems are an order of mag-
Rlide less than for tomographic imaging. For example,
on and Patwari's recent work reported densities of 1

Under certain conditions these problems can be redu
from one to another. For example, mobility detection a
location discrimination may or may not be equivalent d
pending on the latency used when defining the events. E
example, suppose a transmitter is moved and placed

in the same location. Under the definition of mobility det'ransceiver every 15.75%H{9] compared to our highest
tection, an event has always occurred, however, a Chardgﬁsity of 1 tag every 250

in location may or may not have occurred depending on
the time-granularity used in location discrimination. IAnother work close to ours in approach is by Zhastg
the above example, mobility detection and location didl- [12]. They use an intersecting lines approach with

crimination become equivalent as the time-granularity agireless sensors to localize moving people. That work
proaches zero. also took the approach of deploying a regular grid of sen-

rs at a density much higher than ours. Their approach
using the midpoint of the interesting lines works well
fi'the sensors are located in a regular grid. However, we
I{fé’lénd the density to be quite variable in actual deploy-

. . S
In the realm of motion detection, there has been musg
work using the variance of the RSS to determine if a wir

posed a simple motion detection scheme based on



ments, and as a result propose an approach more robust to through the interior of;.

different deployment densities.
For all #;; remaining, the tile’s score is computed using

the following formula:

> ®

(d,)
d

3 Geometric Approach

We now describe our motion detection and localization
approach. Our system requiregriori knowledge of the
locations of the transmitters and receivers being used Y§iered
passive motion localization. This information can eith&"9"s-
be provided by an existing localization system, or it can ltuitively, tiles receive a higher score when the standard
manually determined by the user/administrator of the syfeviation of the intersecting lines is higher than a base
tem. An infrastructure-based localization system alreadgise levelrr. This base score is then discounted by the
has knowledge of the location of its passive receivetength of the line. We used an exponential discounting
and could potentially localize the transmitters being uséttor because signal power is logarithmic with distance,
to provide an estimate (within 2-6 meters) of their locdhus long lines receive much less weight than short ones.
tions [1]. One can view this as a very gross approximation of more
Sephisticated models, e.g., Cassini ovals with exponientia

i; 1S the length of the line segment connecting

The algorithm divides the monitored space into a mat
of overlapping rectangular tiles,, where each tile over- Path 10ss [6].

laps half of the geometric space covered by neighborihgble 1 shows the single set of “best” values for the con-
tiles, except for tiles located at the edges, which only-ovetants in our approach. We determined this set by per-
lap their interior neighbors. By overlapping tiles we avoifbrming a brute-force search through the parameter space
aliasing the space along tile boundaries. The intuitionnisaximizing both precision and recall from a single trace
that non-overlapping tiles may incorrectly report the I@ollected in the CoRE hall building. We then collected
cation of motion that occurs along tile boundaries. Walditional traces at CoRE hall varying the tag/receiver
find that this approach produces qualitatively better rdensities, and also at WINLAB. We found this set of
sults than using non-overlappingtiles. The other approamnstants delivered good performance for these environ-
to anti-aliasing, shrinking the tile size, resulted in Giny- ments. Given the good performance over a range of en-
shaped areas in regions of low density. vironments, our approach is unlikely to need a lot of tun-
ing as the environment changes. We leave investigation
of the sensitivity of our algorithm with respect to these
constants, and as a function of different environments, as
fuyture work.

Given a set of receivers, denoteR. = {ry,ra,..., 7}
and a set omtransmitters, denote® = {s1, s2,..., Sm }
we identify the signal froms; received by somer; as
rssiz;. For each pairwise signal between a transmit

s; and a receiver;, we compute the stgndard deviatiqn [ Parameter | Value |
of the signal over a 3-second sliding window, and define Tile matrix Tox7
this aso;;. The advantage of using the standard devia- a 90T
tion is that it is not dependent upon the actual value of the Rad -
received RSSI, though long-distance links typically have orT 1.2
very low RSSI values<€ —80 dBm), which can be in- dy i 11
fluenced by more environmental effects than short-range Ration 0.7
links. To overcome this effect, we calculate a circle with Ratiop 0.5
its center at the center of a tile, and some rafigs;. For Dr 0.5 (0.2 for 2 traces

our experiments a radius of 90 ft. was used, which was ex-
perimentally determined to reduce fluctuations caused
very long links while not discarding large amounts of dat
significant to localizing motion.

For each tilet,, we discard any; that meets any of theThe scored tiles are then sorted in non-decreasing order

le 1: Parameter values used to detect and localize mo-
ion in the two experimental spaces.

following criteria: according to score. If the score of the highest-scored tile
) _ (“peak tile”) is greater than the detection threshdlgh,
1. the value ob;; is below a threshold value;r; a depth-first recursive cutting algorithm is applied to “re-

move” neighboring tiles that have lower scores than the
peak tile. In our approach, a “cut” tile has its score set
to 0. Given a peak tile]'p.q, the current tile being in-
3. the line segment connectedandr; does not pass spected for cuttingly (initially, this will also be the peak

2. either endpoint of;; (s; or r;) is farther than the
radius,Trqq, from the center ofy.; or

4



Space Dimensions Tile Grid Tile Size
CoRE hall| 220ft. x 88 ft. (L9,000f¢.?) | 19 x 7 (133)| 22ft. x 22 ft. @84 ft.?)
WINLAB | 164ft. x 74 ft. (12,000/t.2) | 19 x 7 (133)] 16ft. x 18 ft. 288 t.2)

Table 2: Dimensions of the two experimental spaces. CoREsallarge 7 story building, of which the third floor
houses the computer science department. The WINLAB byjldisection of a large single story building housing the
WINLAB research center.

tile), and some neighboring tiléy,,., the neighbor tile is tile size. With large tile size400ft.2), a location error

cut under the following conditions: of 1-3 feet will be unlikely to significantly affect the re-
sults of motion localization, while small tile sizex5(ft.%)
1. T'ny,'s score is less thaDr; are less robust to measurement errors. During the brute-

score(Ty) o - ~ force parameter space search we also investigated differ-
2. soorertyey 18 less than the “neighbor ratio”, definegn tjle sizes, finding the 197 tiling listed in Table 1 to

Ration; be a balance between higher-precision, smaller tile sizes
. . . , nd computational limits for real-time application of the
3. seoreTvir) g |ess than the “peak ratio”, define -omp PP
score(Tpeak) Igorithm.
Ratiop.

We continue cutting neighboring tiles in a depth-first ap; .

proach until a neighboring tile’'s score is greater than tr4e Exper imental Method and Re-
current tile's score. Although this is aul-hoc approach sults

to finding local maxima in the matrix of tiles, we found
it works well for our purposes. Future work will explorq
the possibility of using more traditional search metho S
for determining local maxima.

this section, we first describe our experimental ap-
oach. We then describe the metrics we use, but make
the formal definitions in later sections. For each metric,
Any tile checked and not cut while performing the depthve first describe the results using a single person gener-
first traversal of neighboring tiles are added to the peaking mobility events. We then describe the impact of la-
tile's tile group (TG). The results of motion localizationtency and multiple people generating events.

are returned as one or more tile groups, depending on the

number of independent motion events detected by the sys-

tem. The scoring, sorting, and cutting of tiles generategldl. Approach

single tile group indicating the likely location of motion.

All o;; that contributed to the scores of the tiles in thid/e performed experiments in two different spaces. The
tile group are removed from the global set, and the priirst space is one floor of CoRE hall, which is a large of-
cess of scoring and cutting tiles is repeated to generatiéica building (220ft. x 88ft), of which the third floor is
new tile group. Repeating this process enables our sgiedicated to the Computer Science Department. We refer
tem to detect multiple areas of motion if they are suffie this space a®,. The second space is a section of a
ciently distant from each other or caused by disjoint setssearch lab (164ft. x 74ft.), and this houses the Rutgers
of lines and tiles. Once this repeated process no longer"W&NLAB, and we call thisBs; (Table 2). We deployed
turns a new tile group, the system reports the one or moeeeivers and tags throughout both spaces, attempting to
tile groups generated. Figure 1 provides an illustration pfovide effective coverage of the areas where traces would
the tag/receiver lines, a single tile group reported by oloe collected. Because CoRE hall contains private offices
motion localization system, and two ground truth moticaround the perimeter of the building, we were unable to
events: one that is "covered”, and one that is not. place receivers around the perimeter except in two con-

As a result of our geometric approach, the system is sorff€nce rooms. WINLAB was more accessible, and we

what sensitive to the size of the tiles with respect to tHéere able to place some receivers around the perimeter
size of the area, the number of tags and receivers, &idhe experimental space, but were still somewhat con-

the density of their placement. Very large tile sizes wifitr@ined by the availability of networking and power con-

return large areas of motion, while very small tile sizd¥ctions. Figure 2 contains diagrams for the 3 deploy-
(1-2 feet) will essentially be “pixelized” representation€Nts in CORE hall and the deployment of WINLAB.

of the o;; line segments used to score the tiles. In adddithin each experimental space, we configured a local-
tion, the system is sensitive to the accuracy of the lodaation system along with a set of active RFID tags [1]
tions of the transmitters and receivers with respect to twéh receivers at known locations. We then deployed a set
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Figure 1: Image of building 2 with densest tag deploymengsTand receivers are identified by small square icons,
the signal lines are drawn, and several tiles can be seervés aground truth crosshair in the lower-right quadrant.

of tags throughout the space and measured their locations| Trace Description | FP| TE| FP %]
The readers are constantly listening for beacons from the| B, Ext. Only,D =0.2 | 12| 113 | 10.6%
tags, and the tags transmit beacons at 1-second intervals| B,, D = 0.5 1] 144 0.7%
A motion localization solver was connected to the local- | B2, Dr = 0.5 121852 | 1.4%

ization server and the server periodically sends the stan-

dard deviation of the last 3 seconds of RSSI data availaBfPle 3: False positive rates for traces collected in the two
for each transmitter/receiver pair. For our experimen@Xperimental spaces. Unregistered motion or the neces-
the period was set a 1 second, though this could vary gatily low Dz (resulting from the sparse tag deployment)
pending on system constraints such as network laterf6f, CORE hall may be the cause of increased false positive

bandwidth, or server/solver hardware performance.  fates.

For each experiment, we asked the participants to walk

along a designated path through the space with a paper

notebook and a stopwatch. At a number of predefinetgvators during the experiments, this is a potential svurc
landmark locations, the participants would record the c@f experimental error and the impact of unregistered mo-
rent reading of the stopwatch. After the signal data wt@n is not addressed in this paper. Any unknown motion
collected for an experiment, the locations of the parti@@ccurring in either space would be evaluated as false pos-
pants were entered manually into a data file for each tiftiges.

point that signal data was sent to the motion localization
solver. For time points where no fixed location was know . .
(i.e. the participant was not at a landmark location), th 2 Evaluation Metrics

positions were manually interpolated and entered. The h . ‘ | | diff di
longest time interval between landmark locations was 1086 characterize performance along several different di-

than 20 seconds, which would require the interpolation gensions. The most important axes 9f charact.enzatlon
18 points along a straight path are detection accuracy (recall, precision), spatial accu-

) racy (coverage rate/accuracy), and temporal accuracy (la-
For each experimental space, we also collected data duficy). The first set of metrics focus on detection and view
ing “quiet” periods where no motion was taking place (Tanopility detection in a binary manner: either the system
ble 3). CoRE hall has 3 elevators present, identifiable d@tects a mobility event or does not (Section 4.3). The
the diagrams as crossed boxes on the right side (Figurehond set of metrics focuses on the spatial accuracy: the
and since it was not possible to disable the operation of §}&t spatial metric describes how well the tiles cover the



| Metric | Formula] The results for each experiment are provided in Table 5
Recall TP for a single motion event and Table 6 for multiple motion

— Tp;fN events. As a motion detection system, our approach pro-
Precision TP+FP duces relatively good results with recall above 90% for
Coverage Rate (CR) g—% every trace except 1, and precision above 90% for all ex-

Coverage Accuracy (CA % p(_ariments. F_alse positives t_ypicially cente_red _aroundsarea

with a very high density of lines intersecting tiles, and re-
Table 4: Definition of metrics used to evaluate the perfodrEj cing the false positive rate will be investiggted in fietur
mance of the motion localization algorithm. work.. The reason for the low recall 3, (3) is due to

a “blind spot” caused by the tag arrangement (Table 5).

This results in a relatively large number of false nega-
tives for the experiment, pushing the recall below 0.85.
mobility events (Section 4.4, the other characterizes tiihe same motion path was followed#h (6), and due to
sizes of the returned area for both covered and uncovedediser tag placement in the affected area, the recall and
mobility events (Section 4.5). We then examine the ingeverage rate metrics were improved, though small blind
pact of latency on the above metrics (Section 4.6). Finalipots were still observed.

we describe how these metrics hold up in simultaneogs; most of the experiments listed, the detection threshold
multi-event situations. was set to 0.5, though faB; (8), the detection threshold
For evaluating the performance of our motion localizavas set to 0.2 due to the lower density and increased dis-
tion system, we use a sliding time window of 2-5 secontiince of tags from the actors walking through the space.
for ground truth locations. This is because the server and

network performance can delay processing or transmis- .

sion of data, and also because the standard deviatiof# Tile Coverage

computed over a 3-second window and may not chag\ae

significantly until 1 second after the change in RSS! in /lotion localization is a more difficult task than detection,
cates motion between a sender/receiver pair and we introduce two metrics to evaluate our system’s

) performance in this respeatoverage is defined as when
We further evaluate the performance of the motion locg{yje group geometrically encapsulates a ground truth po-
ization system by investigating the following quantitiesjtion, andnon coverage is defined as when a tile group
the geometric error of both covered ground truths and a@ffs 1o encapsulate a ground truth position. The term en-
non-covered ground truths, and the time latency of cQ¥spsylate means that a ground truth is contained within

ered ground truths. the boundaries of one or more tiles within a tile group.
We further define the metricoverage rate (CR) as the
43 Motion Detection number of ground truth motion events that are covered by

a tile group GT¢) divided by the total number of ground
We define the following metrics in the context of motioffuths G1'r). Finally, we definecoverage accuracy (CA)

detection:true positive, false positive, true negative, and S the number of tile groups covering a ground truth mo-
false negative. A true positive (TP) is declared at somelion event [¢) divided by the total number of tile groups
point in time when there exists at least one ground trJifurned by the systenfit,).

and at least one tile group returned by the motion locdlhe motion localization portion of our algorithm is eval-
ization system. This is a binary decision and enables tied in the coverage rate (CR) and coverage accuracy
results of our work to be compared with previous worlCA) columns in Tables 5 and 6. For both metrics, we
in motion detection systems. false positive (FP) oc- report both the instantaneous values, the values obtained
curs when the motion localization system returns onewhen allowing a 2-second and 5-second sliding window
more tile groups when there are no ground truths presértground truth motion events. The 5-second sliding win-
at some point in time. Aalse negative (FN) is defined dow, as described in Section 4.1, is used because of delays
as the motion localization system returning no tile groupsherent in both the data reporting and the calculation of
when there is at least one ground truth present at sothe standard deviation.

pointin time. Atrue negative (TN) is reported when the 1hg coyerage rate (CR) column indicates the number of
motion location system reports no tile groups and thesg, nd truth motion events covered by some tile set when
are no motion ground truths present at some pointin tlmL%ing a window size of 0 seconds. The coverage rate met-
We define recall and precision in the standard way, repre: provides a useful metric in determining how well the

duced in Table 4. Further discussion and explanationlo€alization portion of the algorithm performs. The cov-

Coverage Rate (CR) and Coverage Accuracy (CA) is carage rate for a window size of 2 and 5 seconds is also
tained in Section 4.4. provided, and the significant improvements indicate how



Trace || Tag Placemenf Recall | Precision] CR [ CR(2s)| CR(5s)] CA [ CA(5s) | Lat. (90%) | Lat. (100%) |

Bi(1) Corridors | 0.935 0.980| 0.867 0.929 0.959 | 0.864 0.961 1.1s 3.4s
Bi1(2) Corridors | 0.923 0.980 | 0.843 0.921 1.000 | 0.808 0.960 1.2s 3.4s
B (3) Corridors | 0.849 0.964 | 0.784 0.829 0.865 | 0.830 0.938 <1s 4.5s
Bi(4) Corr. & Ext. | 0.949 1.000 | 0.899 0.949 1.000 | 0.890 0.910 1.2s 4.5s
By (5) Corr. & Ext. | 0.958 1.000 | 0.926 0.958 0.968 | 0.817 0.844 <1s 2.2s
B (6) Corr. & Ext. | 0.905 1.000 | 0.760 0.913 0.971 | 0.800 0.950 1.2s 3.4s
Bi(7) Corr. & Ext. | 0.918 1.000 | 0.855 0.936 1.000 | 0.862 0.923 1.2s 4.5s
By (1) 0.984 0.984| 0.930 0.982 1.000 | 0.757 0.824 <1s 2.1s
B>(2) 0.955 1.000| 0.917 0.983 1.000 | 0.781 0.849 <1s 2.1s
B> (3) 0.983 1.000 | 0.857 0.929 1.000 | 0.762 0.889 1.1s 2.3s
Bs(4) 0.984 1.000 | 0.898 0.966 1.000| 0.871 0.919 <1s 2.1s

Table 5: Detection rates for single motion events in the txpeeimental spaces. Receiver and tag placement for
Buildings 1 and 2 are shown in Figure 2.

[ Trace || Tag Placement] Actors | Recall [ Precision] CR [ CR(2s)] CR(5s)] CA [ CA(5s) | Lat. (90%) [ Lat. (100%) |
B1(8) [Dr =0.2] Exterior 2 1.000 0.938 | 0.797 0.879 0.970 | 0.872 0.936 1.2s 4.9s
B1(9) Corr. & Ext. 3 0.991 1.000 | 0.807 0.905 0.982 | 0.757 0.831 1.3s 4.9s
B1(10) Corr. & Ext. 3 0.984 1.000 | 0.725 0.815 0.911 | 0.689 0.762 2.4s 4.8s
Bi1(11) Corr. & Ext. 3 0.983 1.000 | 0.834 0.915 0.964 | 0.770 0.808 1.3s 4.9s
B1(12) Corr. & Ext. 3 0.982 1.000 | 0.748 0.834 0.945| 0.710 0.771 2.4s 4.8s
By (5) 2 1.000 1.000 | 0.860 0.926 0.971 | 0.901 0.959 <1s 4.2s
Bs(6) 3 0.984 1.000 | 0.806 0.893 0.961 | 0.835 0.924 1.1s 4.0s
By(7) 3 0.987 1.000 | 0.775 0.887 0.979 | 0.890 0.990 1.2s 4.2s

Table 6: Detection rates for multiple motion events in the experimental spaces.

latency in the system affects the performance. Using aflying that higher tag densities can decrease time delays
second window size, the coverage rate for all experimemsdetection. It should also be noted that WINLAB al-
(exceptBi(3)) is consistently above 90% and demorewed better placement of receivers, resulting in a more
strates that the system can effectively capture the lagsiti@ven and thorough coverage of the experimental space,
of motion, though not without a modest time latency. translating into lower coverage latencies.

The coverage accuracy (CA) column indicates what per-
centage of tile groups reported by the algorithm cover a )
ground truth motion event when using a window size ¢¢9 Distance Accuracy

0 seconds. The coverage accuracy metric provides a way
of determining how ||ke|y a given tile group is to Conjn this section we characterize how close a set of tiles

tain a ground truth motion event. With a window size d¥€ to the ground truth. Our motion localization algo-
5 seconds, the coverage accuracy shows modest impréi8m typically returns somewhat regular groups of tiles,
ments, though not as significant as the coverage rate. Wianing that the tile group itself forms a semi-rectangular
the 5-second window, coverage accuracy values are ab®ape with a few outliers or “tails”. Figures 3 and 4 show
76%, with a median of 91.9%. For single motion, the méumulative distribution function (CDF) curves for the lo-
dian coverage accuracy is also 91.9%, while for multipf@lization error in CoRE hall and WINLAB, respectively.

motion events, the median value drops to 87.8%. Each graph contains 6 plots divided into 2 categories:

- “coverage”, tile groups that cover one or more ground
0,
e e o e 2.3 30 moton event, and e groups at o ot cover any
gnds and 100% within 5 seconds, though this is thé ma%r_ound truths (Section 4.4). When a tile group covers a
' 0 ' 9 . round truth, the distances between the ground truth and
mum latency evaluated for our system. For the single niiti

) . o e centers of all tiles in the tile gr re calculated. Th
tion experiments, the0*” percentile is always less than e centers of all tiles in the tile group are calculated ©

or equal to 1.2s, while for two of the multiple motion exminimum, median, and maximum distances from the tile
: 0 . —group are then plotted in the graph respectively as “Cover
periments this increases to 2.4 seconds. Contrastlngi%e b b grap P y

) . . in]”, “Cover [Med]”, and “Cover [Max]”. For tile
different experimental spaces, the smaller, higher-dignsi .
WINLAB ovFv)eraII has Iowper latencies than CoRgE haﬂ&imgroups that do not cover any ground truth events, the dis-

' " tance between the center of the highest-scoring tile in the



group and all ground truths are calculated and the neaddst M ulti-User Detection and L ocalization
ground truth is selected. The distances for all tiles in the

group are computed in the same way as for covering tilooking at Tables 5 and 6, we observe that when multi-
groups, and the results are shown in the graphs. ple actors are simultaneously moving through a space, the
By looking at a horizontal slice at tti®*" percentile point overall amqunt of interference; generatgd is much greater
in the CDF graphs, an approximation of the width/heigma_m fora S|_ngle actor, so motion detgctlon becomes more
of the tile groups can be inferred. Using Figure 4b é‘é"_ab'e- This can_be seen t_)y companngthe rece_llland pre-
an example, making a horizontal cut across Hi¥" cision rates for single motion and multiple motion. The

percentile point shows that for both covering and nofutlier in the multi-user traces 8, (8) where the preci-
fion is the lowest out of all the experiments, an artifact

8{ the low density of tags and larger distance between the

the median tile group for this trace is approximately 16 cmovmg actors and the tags. For this experiment, tags were
droup bp y aced on the exterior of the building, inside offices with

a side. Given that the tiles are approximately 16 ft. x fé dd : | frf h |
ft. and overlap each other, the median tile group return gsed doors, approximately 15-201t. from the actual mo-

for this trace is likely to be composed of approximate ' r_1. A_‘S a result, the detecthr'l threshold was set Iower.,
3y3 tiles. hich increased the false positive rate and lowered preci-

sion
It can also be seen by comparing Figures 3 and 4 and logk-

ing at the error scales on the horizontal axes that WIN'—UItlple simultaneous motion also makes it more diffi-

LAB’s smaller space generally performs better in tern?é"t_forth.e system to d'etermlne the likely Iocat!on of the

of distance accuracy. This is likely a combination of fa(?JOtIOH, since the algorithm mu_s;t _separate multiple events
tors including a more open environment (less obstructioi@™ & global set of data. This is demonstrated_ by the
and few walls), a denser deployment, and tag deploymg}HCh lower coverage rates and accuracy for multiple mo-

that provides more even coverage than that used in CofSt €vents contrasted with single motion. The median in-
hall. stantaneous coverage rate for single motion is 0.867 while

for multiple motion, it is .802. With a 5-second window,
the median coverage rate for single motion is 1.0, and for
multiple motion is 0.967.

4.6 |Impact of Latency

As seen in Tables 5 and 6, latency is a significant fa%— Conclusions

tor. The instantaneous localization results (CR and CA | i

columns) demonstrate that for many of the experimen}3this work we demonstrated very high accuracy and pre-
the localization of motion events is significantly improveSion for passive mobility detection in indoor environ-
by allowing for a time window of 5 seconds. Coverag@€nts. We showed the feasibility of localizing the mo-
rate in particular increases as the window is increasd@ (o within 10-15 ft using a live system in two different
and coverage accuracy to a lesser extent. The effect@fdings. We also determined that it is possible to ob-
the time window on coverage rate become apparenttﬁw such performange on the tlmescalgs of afew secor!ds,
realizing that a sliding window of 5 seconds essential{fth modest computing hardware requirements, and with

provides the algorithm with 5 “opportunities” to cover thé‘i"czti"e RFID tag and reader densities on the order of 1/500
actual mobility event. ft.“. We also showed that this level of performance can

be achieved by utilizing only the standard deviation of the

With cz)nly a 2-second window, the coverage rate increagg8eived signal strength and the geometry of the receivers
by 50% or more of the difference between the 5-secofly tags. Neither complex propagation models nor any
window and the instantaneous results. These res&:,lgmng data are required.

agree with the two latency columns (Lat. 90% and Lat.

100%), which show that for single motion experiment,@,ur quk a,'SQ Ieave§ several open problems. T'he most
and multi-motion experiments to a lesser extent, the malmed'ate IS Improving the geometry of the mopmty lo-
jority of the motion events are covered by tile grougedlization. Using more sophisticated propagation mod-
returned by the algorithm with 1.2 seconds of the a€ls it may be possible to constrain the sizes of the areas
tual event (1.3 seconds for multiple motion). These e%re than we do now. It may also be possible to reduce
perimental results agree with the analysis in section 4t4¢ Worst-case error, which is still substantial. A second
which argues that latency is a factor both of physical lin@PProach might be to use more temporal reasoriieg,
itations (network latency, data processing) and of matH@Ck'ngj in order to constrain the possible areas or reduce
matical limits imposed by using standard deviation of si§f€ Maximum error.

nal data as a basis for motion localization. Another implication of our work is that it points to a
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Figure 2: Tag and receiver deployments for the two experielespaces. The bottom-right space is WINLAB, the
three others are CoRE hall.
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Figure 3: Geometric distance error for 3 traces in CoRE talfé office space). 3a% (4)) and 3c B1(11)) have
tags on the exterior office walls and also in the corridors(/3{(8)) has tags only on the exterior office walls.

broader use of wireless networks for mobility estimgassive motion, however, much more work on higher lay-
tion. As technology trends enable the inclusion of wirers of software are needed to realize this vision in practice
less networks into every communication device, the re-

sulting density and communication volume increases will

make the background radio spectrum sufficiently sai
rated to observe the fluctuations resulting from object m[E{efer ences

tion. Ideally, the wireless infrastructure could provide

high precision passive motion detection and mediumscafg] Y. Chen, E. Elnahraway, J.-A. Francisco,
mobility localization with little additional cost over the K. Kleisouris, X. Li, H. Xue, and R. P. Mar-
base communication system. Our work makes one small tin. Grail: General Real Time Adaptable Indoor

step towards realizing a general purpose layer that tracks Localization. InProceedings of the 4th ACM Con-
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Figure 4: Geometric distance error for 3 traces in WINLAB &inoffice).
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