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Abstract:

In this work we describe and evaluate an approach to ac-
curately infer the position in a building where human mo-
tion occurs. Our approach does not require the humans
to wear any type of device. Such passive mobility lo-
calization is applicable in a wide variety of application
domains, including those in security, human workflows,
and systems management. We position human motion us-
ing the change in standard deviation of the received sig-
nal strength between stationary transmitters and receivers
at known locations. Using a modest transmission rate of
once per second, we localize the motion at 2-5 second
timescales using a lines-intersecting-tiles method where
each line is a straight path between a transmitter and re-
ceiver. Our algorithm returns a set of rectangular tiles
where the motion has occurred. We experimentally val-
idate our scheme in two different building environments,
one containing a cluttered space and a second with a more
open arrangement. We show good results for basic mobil-
ity detection, with a low number of false positives and
negatives. We show that we can localize human motion
with a median error of less than 20 ft. We can achieve
these results with a modest density of inexpensive active
RFID tags, one per 500 ft.2. We also explored how our
results degrade with reduced density of transmitters and
receivers, and show our mobility detection rates remain
good although the geometric precision of the results de-
grades in line with the density of transmitters.

1 Introduction

Passive motion detection, that is, detecting mobility of ob-
jects with no attached wireless devices, and the localiza-
tion of such motion, are key enablers of applications in
areas including security, inventory control, energy man-
agement, and human workflow analysis. For example, an
energy management application might need the long term
human movement patterns in order to make scheduling
decisions about which parts of building to heat and cool.

A health care workflow application may need to know
which rooms are occupied. A data center application may
route work away from regions of a building where it de-
tects human motion in order to reduce the chance of an
operator-induced fault. In all these domains, localizing
human mobility would give developers a new and power-
ful set of tools towards realizing these emerging applica-
tions.

In this work we explore the use of inexpensive commer-
cial off the shelf (COTS) wireless technologies to pas-
sively estimate the location of human motion in indoor
environments. Our approach centers around first detect-
ing motion, and then returning an area constraining the
location. We are able to perform motion detection and
localization in real-time, using no offline training, a rela-
tively low density of tags, and generate results with mod-
est geometric error in location estimation.

Often, both cost and privacy motivate using a wireless
approach. Other motion detection modalities, such as
cameras, ultrasound, IR, and lasers, are limited by line-
of-sight (LOS). In many building environments, the LOS
limitation thus requires deployment of a large number of
sensors. A second issue with cameras is that the potential
for misuse and the resulting privacy violations are often
too high a risk for many users. Our approach estimates
the positions where mobility occurs by observing chang-
ing radio signals caused by human motion. Because the
frequencies used in COTS wireless devices pass through
common construction materials, our approach does not
suffer from LOS limitations. In addition, by utilizing
technologies that do not necessitate recording personal or
private information about the users, we avoid many pri-
vacy issues raised by indoor tracking systems that utilize
cameras or other sensors that capture user information.

Signal propagation theory predicts mobility detection
should be an easier problem than static localization, and
this work demonstrates systems built with mobility as
the primary detection event provide near perfect recall
and precision, as well as obtain good localization perfor-
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mance in multiple environments with zero training. Our
approach is to deploy low cost active RFID tags and read-
ers at known locations, and then reason about mobility
from changes in the standard deviation (σ) of the signal
strength. Our geometric approach then provides a set of
rectangular tiles where mobility has likely occurred from
a global set of overlapping tiles spanning the entire space
being monitored. We use a very simple approximation
of signal propagation: the highest-weighted regions con-
taining mobility are computed from the weighted sums of
the straight line paths between transmitters and receivers
over the tile. Although propagation theory predicts more
elliptical shapes [6], we found straight line paths an ac-
ceptable approximation, and these also greatly simplify
the algorithm so it is realizable in real-time.

This enables a large spatial coverage with a less expen-
sive infrastructure. The trade off of this approach is in the
accuracy and precision of the motion estimation, though
in this work we show we can achieve near perfect motion
detection and localize the motion to within 20 ft., which
is sufficient for many applications.

We perform direct experiments on a deployed system that
provides real-time results, as opposed to using a trace-
driven algorithmic approach or simulation. We show re-
sults in two different office buildings, one with an aver-
age tag density 1 per 250 ft.2, and a second with a tag
every 500 ft.2. The base station density was also rela-
tively modest, about 1/550 ft.2 We also show our results
with a reduced tag densities of 1 per 750 ft.2. The two
buildings used as experimental spaces were office envi-
ronments, one approximately 17,000 ft.2 and the other
approximately 12,000 ft.2. We performed experiments in-
volving 1, 2 and 3 persons actively walking through the
areas and attempting to detect and localize the actors.

Because we used a live system in buildings actively used
for research and business, our layout was irregular, as
we did not have access to all areas. We found that at
an average density of 1 transmitter per 750 ft.2 a single
’blind spot’ significantly impacted the results. Although
the blind spots could be addressed with a careful layout,
this would require much more post-deployment testing.
We also found the geometry of detection improved as both
the density increases and the latency increases (i.e. allow-
ing events to be detected after a few seconds), although
the gains were somewhat modest as the density doubled
from 1 tag/500 ft.2 to 1/250 ft.2.

We found that the detection latency was on the order of
a few seconds. Even with the modest beacon interval of
1/s, we can detect relatively short motion events with la-
tencies of 2-5 seconds. We anticipated that latency would
have a significant effect on the performance of the system
due to the 1 second beacon frequency and other network
or hardware-related delays. A key result of using direct
experiments is that we validated these low latencies, as

well as show that our algorithms are tractable to run on
modest hardware in real time.

We also investigated the ability to disambiguate multiple
simultaneous motion locations. In these experiments, we
had multiple people walking in a building and attempt to
distinguish between each motion event. We found the
base detection results unchanged, and the geometric ac-
curacy and precision of our approach degraded only by
a few feet, making our approach robust to a handful of
simultaneous events; we leave a study investigating the
scalability of simultaneous events as future work.

The remainder of this paper is organized as follows. Sec-
tion 2 covers some background on signal propagation and
related work. Section 3 then describes the detection and
localization algorithms. Next, Section 4 documents the
accuracy, precision, latency, and geometric accuracy of
our approach in two different office environments for sin-
gle and multiple motion events. Finally, in Section 5 we
conclude.

2 Background and Related Work

Our work is founded on two well tested ideas from signal
propagation theory. The first concerns how to character-
ize the multipath environment, and the second how people
impact the received signal in such an environment. The
key theoretical result we leverage from prior signal prop-
agation work is that the variance in response to human
motion should be significantly higher than the variance
resulting from noise. A second less used result is that the
signal’s dominant component is most often a straight line
from the transmitter to the receiver [6]. A key result from
our work is that simple, intuitive application of these re-
sults is sufficient for mobility detection and localization.
It remains an open question if, and by how much, more
complex models will improve the geometric bounds pro-
vided by our approach.

2.1 Background

Modeling the received signal strength (RSS) in indoor en-
vironments is challenging task because of many effects on
the radio waveform. These include shadowing,i.e. block-
ing a signal; reflection,i.e. waves bouncing off an ob-
ject; diffraction,i.e. waves spreading in response to ob-
stacles; and refraction,i.e. waves bending as they pass
through different mediums. From a system perspective,
the modeling challenge is not to provide absolute accu-
racy, but rather to find a model that balances accuracy,
generality, computational complexity and parameter ob-
servability for the task at hand.

It has been empirically demonstrated in numerous studies
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that indoor signal power distributions are typically Rician.
Such distributions model environments where a few dom-
inant paths compose the received signal. This stands in
contrast to Rayleigh environments, where a received sig-
nal is composed of many uncorrelated components. The
important result we draw on from the Rician models is
that a change in a few components will have compara-
tively large effects compared to noise. Thus, the result-
ing stochastic process will have a high variance, even on
short timescales. A second result from previous model-
ing efforts is that the impact of objects impacts the field in
the LOS between a transmitter and receiver [6]. Although
more complex geometries, e.g. modeling the multipath
components as ellipses rather than rays [6], or modeling
ground effects [12] could be used, we found that such
complexity did not deliver much benefit over modeling
the propagation using straight lines.

2.2 Related Work

One of the first works to articulate the area of passive de-
tection was by Youssefet al. [11]. Using terminology
from that work, we focus on detection and tracking. How-
ever, our work expands on those definitions by making
mobility itself a detection event, as opposed to object de-
tection. Most other works assume detection viastatic lo-
calization, where the goal is to locate stationary objects.
A second class of related works examinelocation discrim-
ination, which determines if an object has changed posi-
tions [13]. All three are distinct problems. As the field
is still relatively new, there are still few formal problem
definitions and accepted operating regimes for those prob-
lems. Note that mobility detection and location discrim-
ination are easy problems if we had a static localization
system with zero error that operated with zero latency and
with an infinitely small time granularity. However, given
the current state of the art, mobility detection and location
discrimination are useful.

Under certain conditions these problems can be reduced
from one to another. For example, mobility detection and
location discrimination may or may not be equivalent de-
pending on the latency used when defining the events. For
example, suppose a transmitter is moved and placed back
in the same location. Under the definition of mobility de-
tection, an event has always occurred, however, a change
in location may or may not have occurred depending on
the time-granularity used in location discrimination. In
the above example, mobility detection and location dis-
crimination become equivalent as the time-granularity ap-
proaches zero.

In the realm of motion detection, there has been much
work using the variance of the RSS to determine if a wire-
less device has moved. Wallbaum and Diepolder pro-
posed a simple motion detection scheme based on RSS

readings from a Wireless LAN [8]. They used a variance
threshold to declare that a device is moving or stationary.
With three access points (APs) and a sliding window of
size five samples per AP, they got five percent false pos-
itives and about ten percent false negatives. Muthukrish-
nanet al. also presented a motion detection algorithm that
was based on the spectral analysis of WLAN radio signal
strengths by employing Fast Fourier Transform [2, 3]. A
two-state classification scheme was used to deduce if a
user is moving or still with an average classification ac-
curacy of 94%. Patwari and Kasera proposed a location
distinction mechanism that used a physical layer charac-
teristic of the radio channel, called temporal link signa-
ture, between a transmitter and a receiver to detect when
the transmitter or receiver changed position [5]. Finally,
Xing et al. explored the use of mobile sensors to address
the limitation of wireless sensors networks for target de-
tection [10]. Target detection relies on sensing changes in
the energy of signals emitted by targets.

The ability to passively localize humans has been recently
approached by several groups. Seifeldin and Youssef, for
example, first use an offline training phase, and then ap-
ply a matching approach based on Bayes’ rule [7]. Their
matching approach has its roots in machine learning, and
thus unlike our geometric approach which is more an ap-
proximation founded on signal propagation. Our results
show that for the mobility detection problem the signal
maps are sufficiently simple that machine learning ap-
proaches are not required.

Radio tomographic imaging seeks to localize object in
the environment using the signal properties. Two recent
works take this step to the logical conclusion of trying
to map a human body using wireless networks [4, 6, 9].
Although our localization could be viewed as an approxi-
mation of tomographic imaging, it is important to realize
the end goals are much different: we seek only to return a
sufficiently constrained area for an event rather than build
a model of the object(s) contained in a space, making our
modeling and algorithms much simpler. Also, a second
key difference arising from the different goals is that the
deployment densities and regularity needed for the motion
detection and localization problems are an order of mag-
nitude less than for tomographic imaging. For example,
Wilson and Patwari’s recent work reported densities of 1
transceiver every 15.75 ft2 [9] compared to our highest
density of 1 tag every 250 ft.2.

Another work close to ours in approach is by Zhanget
al. [12]. They use an intersecting lines approach with
wireless sensors to localize moving people. That work
also took the approach of deploying a regular grid of sen-
sors at a density much higher than ours. Their approach
of using the midpoint of the interesting lines works well
if the sensors are located in a regular grid. However, we
found the density to be quite variable in actual deploy-
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ments, and as a result propose an approach more robust to
different deployment densities.

3 Geometric Approach

We now describe our motion detection and localization
approach. Our system requiresa priori knowledge of the
locations of the transmitters and receivers being used for
passive motion localization. This information can either
be provided by an existing localization system, or it can be
manually determined by the user/administrator of the sys-
tem. An infrastructure-based localization system already
has knowledge of the location of its passive receivers,
and could potentially localize the transmitters being used
to provide an estimate (within 2-6 meters) of their loca-
tions [1].

The algorithm divides the monitored space into a matrix
of overlapping rectangular tiles,T, where each tile over-
laps half of the geometric space covered by neighboring
tiles, except for tiles located at the edges, which only over-
lap their interior neighbors. By overlapping tiles we avoid
aliasing the space along tile boundaries. The intuition is
that non-overlapping tiles may incorrectly report the lo-
cation of motion that occurs along tile boundaries. We
find that this approach produces qualitatively better re-
sults than using non-overlapping tiles. The other approach
to anti-aliasing, shrinking the tile size, resulted in linearly-
shaped areas in regions of low density.

Given a set ofn receivers, denotedR = {r1, r2, . . . , rn}
and a set ofm transmitters, denotedS = {s1, s2, . . . , sm}
we identify the signal fromsi received by somerj as
rssiij . For each pairwise signal between a transmitter
si and a receiverrj , we compute the standard deviation
of the signal over a 3-second sliding window, and define
this asσij . The advantage of using the standard devia-
tion is that it is not dependent upon the actual value of the
received RSSI, though long-distance links typically have
very low RSSI values (< −80 dBm), which can be in-
fluenced by more environmental effects than short-range
links. To overcome this effect, we calculate a circle with
its center at the center of a tile, and some radiusTRad. For
our experiments a radius of 90 ft. was used, which was ex-
perimentally determined to reduce fluctuations caused by
very long links while not discarding large amounts of data
significant to localizing motion.

For each tiletk we discard anyσij that meets any of the
following criteria:

1. the value ofσij is below a threshold value,σT ;

2. either endpoint ofσij (si or rj) is farther than the
radius,TRad, from the center oftk; or

3. the line segment connectedsi andrj does not pass

through the interior oftk.

For all σij remaining, the tile’s score is computed using
the following formula:

∑

[

(σij − σT )

d
(dp)
ij

]

(1)

wheredij is the length of the line segment connectingsi

andrj .

Intuitively, tiles receive a higher score when the standard
deviation of the intersecting lines is higher than a base
noise levelσT . This base score is then discounted by the
length of the line. We used an exponential discounting
factor because signal power is logarithmic with distance,
thus long lines receive much less weight than short ones.
One can view this as a very gross approximation of more
sophisticated models, e.g., Cassini ovals with exponential
path loss [6].

Table 1 shows the single set of “best” values for the con-
stants in our approach. We determined this set by per-
forming a brute-force search through the parameter space
maximizing both precision and recall from a single trace
collected in the CoRE hall building. We then collected
additional traces at CoRE hall varying the tag/receiver
densities, and also at WINLAB. We found this set of
constants delivered good performance for these environ-
ments. Given the good performance over a range of en-
vironments, our approach is unlikely to need a lot of tun-
ing as the environment changes. We leave investigation
of the sensitivity of our algorithm with respect to these
constants, and as a function of different environments, as
future work.

Parameter Value

Tile matrix 19 x 7
TRad 90ft.
σT 1.2
dp 1.1
RatioN 0.7
RatioP 0.5
DT 0.5 (0.2 for 2 traces)

Table 1: Parameter values used to detect and localize mo-
tion in the two experimental spaces.

The scored tiles are then sorted in non-decreasing order
according to score. If the score of the highest-scored tile
(“peak tile”) is greater than the detection thresholdDT ,
a depth-first recursive cutting algorithm is applied to “re-
move” neighboring tiles that have lower scores than the
peak tile. In our approach, a “cut” tile has its score set
to 0. Given a peak tile,TPeak, the current tile being in-
spected for cutting,T0 (initially, this will also be the peak
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Space Dimensions Tile Grid Tile Size
CoRE hall 220ft. x 88 ft. (19, 000ft.2) 19 x 7 (133) 22ft. x 22 ft. (484ft.2)
WINLAB 164ft. x 74 ft. (12, 000ft.2) 19 x 7 (133) 16ft. x 18 ft. (288ft.2)

Table 2: Dimensions of the two experimental spaces. CoRE hall is a large 7 story building, of which the third floor
houses the computer science department. The WINLAB building a section of a large single story building housing the
WINLAB research center.

tile), and some neighboring tile,TNbr, the neighbor tile is
cut under the following conditions:

1. TNbr’s score is less thanDT ;

2. score(T0)
score(TNbr) is less than the “neighbor ratio”, defined
RatioN ;

3. score(TNbr)
score(TP eak) is less than the “peak ratio”, defined
RatioP .

We continue cutting neighboring tiles in a depth-first ap-
proach until a neighboring tile’s score is greater than the
current tile’s score. Although this is anad-hoc approach
to finding local maxima in the matrix of tiles, we found
it works well for our purposes. Future work will explore
the possibility of using more traditional search methods
for determining local maxima.

Any tile checked and not cut while performing the depth-
first traversal of neighboring tiles are added to the peak
tile’s tile group (TG). The results of motion localization
are returned as one or more tile groups, depending on the
number of independent motion events detected by the sys-
tem. The scoring, sorting, and cutting of tiles generates a
single tile group indicating the likely location of motion.
All σij that contributed to the scores of the tiles in this
tile group are removed from the global set, and the pro-
cess of scoring and cutting tiles is repeated to generate a
new tile group. Repeating this process enables our sys-
tem to detect multiple areas of motion if they are suffi-
ciently distant from each other or caused by disjoint sets
of lines and tiles. Once this repeated process no longer re-
turns a new tile group, the system reports the one or more
tile groups generated. Figure 1 provides an illustration of
the tag/receiver lines, a single tile group reported by our
motion localization system, and two ground truth motion
events: one that is ”covered”, and one that is not.

As a result of our geometric approach, the system is some-
what sensitive to the size of the tiles with respect to the
size of the area, the number of tags and receivers, and
the density of their placement. Very large tile sizes will
return large areas of motion, while very small tile sizes
(1-2 feet) will essentially be “pixelized” representations
of theσij line segments used to score the tiles. In addi-
tion, the system is sensitive to the accuracy of the loca-
tions of the transmitters and receivers with respect to the

tile size. With large tile size (400ft.2), a location error
of 1-3 feet will be unlikely to significantly affect the re-
sults of motion localization, while small tile sizes (25ft.2)
are less robust to measurement errors. During the brute-
force parameter space search we also investigated differ-
ent tile sizes, finding the 19x7 tiling listed in Table 1 to
be a balance between higher-precision, smaller tile sizes
and computational limits for real-time application of the
algorithm.

4 Experimental Method and Re-
sults

In this section, we first describe our experimental ap-
proach. We then describe the metrics we use, but make
the formal definitions in later sections. For each metric,
we first describe the results using a single person gener-
ating mobility events. We then describe the impact of la-
tency and multiple people generating events.

4.1 Approach

We performed experiments in two different spaces. The
first space is one floor of CoRE hall, which is a large of-
fice building (220ft. x 88ft), of which the third floor is
dedicated to the Computer Science Department. We refer
to this space asB1. The second space is a section of a
research lab (164ft. x 74ft.), and this houses the Rutgers
WINLAB, and we call thisB2 (Table 2). We deployed
receivers and tags throughout both spaces, attempting to
provide effective coverage of the areas where traces would
be collected. Because CoRE hall contains private offices
around the perimeter of the building, we were unable to
place receivers around the perimeter except in two con-
ference rooms. WINLAB was more accessible, and we
were able to place some receivers around the perimeter
of the experimental space, but were still somewhat con-
strained by the availability of networking and power con-
nections. Figure 2 contains diagrams for the 3 deploy-
ments in CoRE hall and the deployment of WINLAB.

Within each experimental space, we configured a local-
ization system along with a set of active RFID tags [1]
with receivers at known locations. We then deployed a set
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Figure 1: Image of building 2 with densest tag deployment. Tags and receivers are identified by small square icons,
the signal lines are drawn, and several tiles can be seen to cover a ground truth crosshair in the lower-right quadrant.

of tags throughout the space and measured their locations.
The readers are constantly listening for beacons from the
tags, and the tags transmit beacons at 1-second intervals.

A motion localization solver was connected to the local-
ization server and the server periodically sends the stan-
dard deviation of the last 3 seconds of RSSI data available
for each transmitter/receiver pair. For our experiments,
the period was set a 1 second, though this could vary de-
pending on system constraints such as network latency,
bandwidth, or server/solver hardware performance.

For each experiment, we asked the participants to walk
along a designated path through the space with a paper
notebook and a stopwatch. At a number of predefined
landmark locations, the participants would record the cur-
rent reading of the stopwatch. After the signal data was
collected for an experiment, the locations of the partici-
pants were entered manually into a data file for each time
point that signal data was sent to the motion localization
solver. For time points where no fixed location was known
(i.e. the participant was not at a landmark location), the
positions were manually interpolated and entered. The
longest time interval between landmark locations was less
than 20 seconds, which would require the interpolation of
18 points along a straight path.

For each experimental space, we also collected data dur-
ing “quiet” periods where no motion was taking place (Ta-
ble 3). CoRE hall has 3 elevators present, identifiable in
the diagrams as crossed boxes on the right side (Figure 2),
and since it was not possible to disable the operation of the

Trace Description FP TE FP %

B1, Ext. Only,DT = 0.2 12 113 10.6%
B2, DT = 0.5 1 144 0.7%
B2, DT = 0.5 12 852 1.4%

Table 3: False positive rates for traces collected in the two
experimental spaces. Unregistered motion or the neces-
sarily lowDT (resulting from the sparse tag deployment)
for CoRE hall may be the cause of increased false positive
rates.

elevators during the experiments, this is a potential source
of experimental error and the impact of unregistered mo-
tion is not addressed in this paper. Any unknown motion
occurring in either space would be evaluated as false pos-
itives.

4.2 Evaluation Metrics

We characterize performance along several different di-
mensions. The most important axes of characterization
are detection accuracy (recall, precision), spatial accu-
racy (coverage rate/accuracy), and temporal accuracy (la-
tency). The first set of metrics focus on detection and view
mobility detection in a binary manner: either the system
detects a mobility event or does not (Section 4.3). The
second set of metrics focuses on the spatial accuracy: the
first spatial metric describes how well the tiles cover the
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Metric Formula

Recall TP
TP+FN

Precision TP
TP+FP

Coverage Rate (CR) GTC

GTT

Coverage Accuracy (CA) TC

TT

Table 4: Definition of metrics used to evaluate the perfor-
mance of the motion localization algorithm.

mobility events (Section 4.4; the other characterizes the
sizes of the returned area for both covered and uncovered
mobility events (Section 4.5). We then examine the im-
pact of latency on the above metrics (Section 4.6). Finally,
we describe how these metrics hold up in simultaneous
multi-event situations.

For evaluating the performance of our motion localiza-
tion system, we use a sliding time window of 2-5 seconds
for ground truth locations. This is because the server and
network performance can delay processing or transmis-
sion of data, and also because the standard deviation is
computed over a 3-second window and may not change
significantly until 1 second after the change in RSSI indi-
cates motion between a sender/receiver pair.

We further evaluate the performance of the motion local-
ization system by investigating the following quantities:
the geometric error of both covered ground truths and and
non-covered ground truths, and the time latency of cov-
ered ground truths.

4.3 Motion Detection

We define the following metrics in the context of motion
detection:true positive, false positive, true negative, and
false negative. A true positive (TP) is declared at some
point in time when there exists at least one ground truth
and at least one tile group returned by the motion local-
ization system. This is a binary decision and enables the
results of our work to be compared with previous work
in motion detection systems. Afalse positive (FP) oc-
curs when the motion localization system returns one or
more tile groups when there are no ground truths present
at some point in time. Afalse negative (FN) is defined
as the motion localization system returning no tile groups
when there is at least one ground truth present at some
point in time. A true negative (TN) is reported when the
motion location system reports no tile groups and there
are no motion ground truths present at some point in time.

We define recall and precision in the standard way, repro-
duced in Table 4. Further discussion and explanation of
Coverage Rate (CR) and Coverage Accuracy (CA) is con-
tained in Section 4.4.

The results for each experiment are provided in Table 5
for a single motion event and Table 6 for multiple motion
events. As a motion detection system, our approach pro-
duces relatively good results with recall above 90% for
every trace except 1, and precision above 90% for all ex-
periments. False positives typically centered around areas
with a very high density of lines intersecting tiles, and re-
ducing the false positive rate will be investigated in future
work. The reason for the low recall ofB1(3) is due to
a “blind spot” caused by the tag arrangement (Table 5).
This results in a relatively large number of false nega-
tives for the experiment, pushing the recall below 0.85.
The same motion path was followed inB1(6), and due to
denser tag placement in the affected area, the recall and
coverage rate metrics were improved, though small blind
spots were still observed.

For most of the experiments listed, the detection threshold
was set to 0.5, though forB1(8), the detection threshold
was set to 0.2 due to the lower density and increased dis-
tance of tags from the actors walking through the space.

4.4 Tile Coverage

Motion localization is a more difficult task than detection,
and we introduce two metrics to evaluate our system’s
performance in this respect:coverage is defined as when
a tile group geometrically encapsulates a ground truth po-
sition, andnon coverage is defined as when a tile group
fails to encapsulate a ground truth position. The term en-
capsulate means that a ground truth is contained within
the boundaries of one or more tiles within a tile group.
We further define the metriccoverage rate (CR) as the
number of ground truth motion events that are covered by
a tile group (GTC) divided by the total number of ground
truths (GTT ). Finally, we definecoverage accuracy (CA)
as the number of tile groups covering a ground truth mo-
tion event (TC) divided by the total number of tile groups
returned by the system (TT ).

The motion localization portion of our algorithm is eval-
uated in the coverage rate (CR) and coverage accuracy
(CA) columns in Tables 5 and 6. For both metrics, we
report both the instantaneous values, the values obtained
when allowing a 2-second and 5-second sliding window
for ground truth motion events. The 5-second sliding win-
dow, as described in Section 4.1, is used because of delays
inherent in both the data reporting and the calculation of
the standard deviation.

The coverage rate (CR) column indicates the number of
ground truth motion events covered by some tile set when
using a window size of 0 seconds. The coverage rate met-
ric provides a useful metric in determining how well the
localization portion of the algorithm performs. The cov-
erage rate for a window size of 2 and 5 seconds is also
provided, and the significant improvements indicate how
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Trace Tag Placement Recall Precision CR CR (2s) CR (5s) CA CA (5s) Lat. (90%) Lat. (100%)

B1(1) Corridors 0.935 0.980 0.867 0.929 0.959 0.864 0.961 1.1s 3.4s
B1(2) Corridors 0.923 0.980 0.843 0.921 1.000 0.808 0.960 1.2s 3.4s
B1(3) Corridors 0.849 0.964 0.784 0.829 0.865 0.830 0.938 < 1s 4.5s
B1(4) Corr. & Ext. 0.949 1.000 0.899 0.949 1.000 0.890 0.910 1.2s 4.5s
B1(5) Corr. & Ext. 0.958 1.000 0.926 0.958 0.968 0.817 0.844 < 1s 2.2s
B1(6) Corr. & Ext. 0.905 1.000 0.760 0.913 0.971 0.800 0.950 1.2s 3.4s
B1(7) Corr. & Ext. 0.918 1.000 0.855 0.936 1.000 0.862 0.923 1.2s 4.5s
B2(1) 0.984 0.984 0.930 0.982 1.000 0.757 0.824 < 1s 2.1s
B2(2) 0.955 1.000 0.917 0.983 1.000 0.781 0.849 < 1s 2.1s
B2(3) 0.983 1.000 0.857 0.929 1.000 0.762 0.889 1.1s 2.3s
B2(4) 0.984 1.000 0.898 0.966 1.000 0.871 0.919 < 1s 2.1s

Table 5: Detection rates for single motion events in the two experimental spaces. Receiver and tag placement for
Buildings 1 and 2 are shown in Figure 2.

Trace Tag Placement Actors Recall Precision CR CR (2s) CR (5s) CA CA (5s) Lat. (90%) Lat. (100%)

B1(8) [DT = 0.2] Exterior 2 1.000 0.938 0.797 0.879 0.970 0.872 0.936 1.2s 4.9s
B1(9) Corr. & Ext. 3 0.991 1.000 0.807 0.905 0.982 0.757 0.831 1.3s 4.9s
B1(10) Corr. & Ext. 3 0.984 1.000 0.725 0.815 0.911 0.689 0.762 2.4s 4.8s
B1(11) Corr. & Ext. 3 0.983 1.000 0.834 0.915 0.964 0.770 0.808 1.3s 4.9s
B1(12) Corr. & Ext. 3 0.982 1.000 0.748 0.834 0.945 0.710 0.771 2.4s 4.8s
B2(5) 2 1.000 1.000 0.860 0.926 0.971 0.901 0.959 < 1s 4.2s
B2(6) 3 0.984 1.000 0.806 0.893 0.961 0.835 0.924 1.1s 4.0s
B2(7) 3 0.987 1.000 0.775 0.887 0.979 0.890 0.990 1.2s 4.2s

Table 6: Detection rates for multiple motion events in the two experimental spaces.

latency in the system affects the performance. Using a 5-
second window size, the coverage rate for all experiments
(exceptB1(3)) is consistently above 90% and demon-
strates that the system can effectively capture the locations
of motion, though not without a modest time latency.

The coverage accuracy (CA) column indicates what per-
centage of tile groups reported by the algorithm cover a
ground truth motion event when using a window size of
0 seconds. The coverage accuracy metric provides a way
of determining how likely a given tile group is to con-
tain a ground truth motion event. With a window size of
5 seconds, the coverage accuracy shows modest improve-
ments, though not as significant as the coverage rate. With
the 5-second window, coverage accuracy values are above
76%, with a median of 91.9%. For single motion, the me-
dian coverage accuracy is also 91.9%, while for multiple
motion events, the median value drops to 87.8%.

The latency (Lat.) columns indicate that 90% of the
ground truth motion events are covered within 1.2 sec-
onds, and 100% within 5 seconds, though this is the maxi-
mum latency evaluated for our system. For the single mo-
tion experiments, the90th percentile is always less than
or equal to 1.2s, while for two of the multiple motion ex-
periments this increases to 2.4 seconds. Contrasting the
different experimental spaces, the smaller, higher-density
WINLAB overall has lower latencies than CoRE hall, im-

plying that higher tag densities can decrease time delays
in detection. It should also be noted that WINLAB al-
lowed better placement of receivers, resulting in a more
even and thorough coverage of the experimental space,
translating into lower coverage latencies.

4.5 Distance Accuracy

In this section we characterize how close a set of tiles
are to the ground truth. Our motion localization algo-
rithm typically returns somewhat regular groups of tiles,
meaning that the tile group itself forms a semi-rectangular
shape with a few outliers or “tails”. Figures 3 and 4 show
cumulative distribution function (CDF) curves for the lo-
calization error in CoRE hall and WINLAB, respectively.
Each graph contains 6 plots divided into 2 categories:
“coverage”, tile groups that cover one or more ground
truth motion events, and tile groups that do not cover any
ground truths (Section 4.4). When a tile group covers a
ground truth, the distances between the ground truth and
the centers of all tiles in the tile group are calculated. The
minimum, median, and maximum distances from the tile
group are then plotted in the graph respectively as “Cover
[Min]”, “Cover [Med]”, and “Cover [Max]”. For tile
groups that do not cover any ground truth events, the dis-
tance between the center of the highest-scoring tile in the
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group and all ground truths are calculated and the nearest
ground truth is selected. The distances for all tiles in the
group are computed in the same way as for covering tile
groups, and the results are shown in the graphs.

By looking at a horizontal slice at the50th percentile point
in the CDF graphs, an approximation of the width/height
of the tile groups can be inferred. Using Figure 4b as
an example, making a horizontal cut across the50th

percentile point shows that for both covering and non-
covering tile groups, the minimum distance is around 4 ft.
and the maximum around 20 ft. This would indicate that
the median tile group for this trace is approximately 16 on
a side. Given that the tiles are approximately 16 ft. x 18
ft. and overlap each other, the median tile group returned
for this trace is likely to be composed of approximately
3x3 tiles.

It can also be seen by comparing Figures 3 and 4 and look-
ing at the error scales on the horizontal axes that WIN-
LAB’s smaller space generally performs better in terms
of distance accuracy. This is likely a combination of fac-
tors including a more open environment (less obstructions
and few walls), a denser deployment, and tag deployment
that provides more even coverage than that used in CoRE
hall.

4.6 Impact of Latency

As seen in Tables 5 and 6, latency is a significant fac-
tor. The instantaneous localization results (CR and CA
columns) demonstrate that for many of the experiments,
the localization of motion events is significantly improved
by allowing for a time window of 5 seconds. Coverage
rate in particular increases as the window is increased,
and coverage accuracy to a lesser extent. The effects of
the time window on coverage rate become apparent by
realizing that a sliding window of 5 seconds essentially
provides the algorithm with 5 “opportunities” to cover the
actual mobility event.

With only a 2-second window, the coverage rate increases
by 50% or more of the difference between the 5-second
window and the instantaneous results. These results
agree with the two latency columns (Lat. 90% and Lat.
100%), which show that for single motion experiments,
and multi-motion experiments to a lesser extent, the ma-
jority of the motion events are covered by tile groups
returned by the algorithm with 1.2 seconds of the ac-
tual event (1.3 seconds for multiple motion). These ex-
perimental results agree with the analysis in section 4.1,
which argues that latency is a factor both of physical lim-
itations (network latency, data processing) and of mathe-
matical limits imposed by using standard deviation of sig-
nal data as a basis for motion localization.

4.7 Multi-User Detection and Localization

Looking at Tables 5 and 6, we observe that when multi-
ple actors are simultaneously moving through a space, the
overall amount of interference generated is much greater
than for a single actor, so motion detection becomes more
reliable. This can be seen by comparing the recall and pre-
cision rates for single motion and multiple motion. The
outlier in the multi-user traces isB1(8) where the preci-
sion is the lowest out of all the experiments, an artifact
of the low density of tags and larger distance between the
moving actors and the tags. For this experiment, tags were
placed on the exterior of the building, inside offices with
closed doors, approximately 15-20 ft. from the actual mo-
tion. As a result, the detection threshold was set lower,
which increased the false positive rate and lowered preci-
sion.

Multiple simultaneous motion also makes it more diffi-
cult for the system to determine the likely location of the
motion, since the algorithm must separate multiple events
from a global set of data. This is demonstrated by the
much lower coverage rates and accuracy for multiple mo-
tion events contrasted with single motion. The median in-
stantaneous coverage rate for single motion is 0.867 while
for multiple motion, it is .802. With a 5-second window,
the median coverage rate for single motion is 1.0, and for
multiple motion is 0.967.

5 Conclusions

In this work we demonstrated very high accuracy and pre-
cision for passive mobility detection in indoor environ-
ments. We showed the feasibility of localizing the mo-
tion to within 10-15 ft using a live system in two different
buildings. We also determined that it is possible to ob-
tain such performance on the timescales of a few seconds,
with modest computing hardware requirements, and with
active RFID tag and reader densities on the order of 1/500
ft.2. We also showed that this level of performance can
be achieved by utilizing only the standard deviation of the
received signal strength and the geometry of the receivers
and tags. Neither complex propagation models nor any
training data are required.

Our work also leaves several open problems. The most
immediate is improving the geometry of the mobility lo-
calization. Using more sophisticated propagation mod-
els it may be possible to constrain the sizes of the areas
more than we do now. It may also be possible to reduce
the worst-case error, which is still substantial. A second
approach might be to use more temporal reasoning,i.e.
tracking, in order to constrain the possible areas or reduce
the maximum error.

Another implication of our work is that it points to a
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CoRE hall with the tags on corridor walls and exterior of-
fices. Used inB1(4 − 7, 9 − 12).

CoRE hall with tags only on corridor walls. Used in
B1(1 − 3).

CoRE hall with tags only on exterior offices. Used in
B1(8).

WINLAB with tag locations. Used inB2(1 − 7).

Figure 2: Tag and receiver deployments for the two experimental spaces. The bottom-right space is WINLAB, the
three others are CoRE hall.
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(b) 2 People
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(c) 3 People

Figure 3: Geometric distance error for 3 traces in CoRE hall (large office space). 3a (B1(4)) and 3c (B1(11)) have
tags on the exterior office walls and also in the corridors. 3b(B1(8)) has tags only on the exterior office walls.

broader use of wireless networks for mobility estima-
tion. As technology trends enable the inclusion of wire-
less networks into every communication device, the re-
sulting density and communication volume increases will
make the background radio spectrum sufficiently satu-
rated to observe the fluctuations resulting from object mo-
tion. Ideally, the wireless infrastructure could provide
high precision passive motion detection and medium scale
mobility localization with little additional cost over the
base communication system. Our work makes one small
step towards realizing a general purpose layer that tracks

passive motion, however, much more work on higher lay-
ers of software are needed to realize this vision in practice.
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