
Rutgers Computer Science Technical Report RU-DCS-TR684
February 2011

Generalized Similarity Kernels for Efficient Sequence
Classification

by

Pavel P. Kuksa, Imdadullah Khan, Vladimir Pavlovic
Rutgers University

Piscataway, NJ 08854
pkuksa@cs.rutgers.edu

ABSTRACT

String kernel-based machine learning methods have yieldedgreat success in practical tasks of
structured/sequential data analysis. In this paper we propose a novel computational framework that
uses general similarity metrics and distance-preserving embeddings with string kernels to improve
sequence classification. An embedding step, a distance-preserving bitstring mapping, is used to ef-
fectively capture similarity between otherwise symbolically different sequence elements. We show
that it is possible to retain computational efficiency of string kernels while using this more “pre-
cise” measure of similarity. We then demonstrate that on a number of sequence classification tasks
such as music, and biological sequence classification, the new method can substantially improve
upon state-of-the-art string kernel baselines.

1 Introduction

Analysis of large scale sequential data has become an important task in machine learning and
data mining, inspired by applications such as biological sequence analysis, text and audio mining.
Classification of string data, sequences of discrete symbols, has attracted particular interest and has
led to a number of new algorithms [1, 5, 11, 15]. These algorithms often exhibit state-of-the-art
performance on tasks such as protein superfamily and fold prediction, music genre classification
and document topic elucidation.

A family of state-of-the-art approaches to scoring similarity between pairs of sequences relies
on fixed length, substring spectral representations and thenotion of mismatch kernels, c.f. [5, 11].
There, a sequence is represented as the spectra (counts) of all short substrings (k-mers) contained
within a sequence. The similarity score is established by exact or approximate matches ofk-mers.
Initial work, e.g., [11, 14], has demonstrated that this similarity can be computed using trie-based
approaches inO(km+1|Σ|m(|X|+ |Y |)), for stringsX andY with symbols from alphabetΣ and up
tom mismatches. More recently, [7] introduced linear time algorithms with alphabet-independent
complexity applicable to computation of a large class of existing string kernels.

However, typical spectral models (e.g., mismatch/spectrum kernels, gapped and wildcard ker-
nels) rely onsymbolic Hamming-distancebased matching ofk-mers. This Hamming matching
may not necessarily reflect the underlying (e.g., physical)similarity between sequence fragments.
For example, in protein sequence analysis different pairs of symbols (amino acids) induce different
similarity levels, a consequence of particular physical orchemical properties. Similarly, matching
of n-grams of words should reflect semantic similarity and not only simple character-level dif-
ferences. Unfortunately, traditional string kernel approaches do not readily extend to the case
of general non-Hamming similarity metrics without introducing a high computational cost (e.g.,
requiring quadratic or exponential running time).

In this work we propose novellinear-timealgorithms for modeling sequences under inexact
matching framework with general similarity metricsS(·, ·) that exhibit improved performance on
a variety of distinct classification tasks. In particular, we present a novel computational framework
that (1) accepts a general (non-Hamming) similarity metricS(·, ·), (2) approximately preserves
S(·, ·) through symbolic binary embedding ofk-mers, and (3) uses Hamming-type matching on
the embedded representation with string kernels (linear-time algorithms) to improve sequence clas-
sification. The adaptive embedding step, which learns the similarity/distance-preserving embed-
dings, is used to effectively capture similarity interrelationships between otherwise symbolically
dissimilar sequence elements/features.

We demonstrate benefits of our algorithms on many challenging sequence classification prob-
lems, bothdiscrete-andcontinuous-valued, such as detecting homology (evolutionary similarity)
of remotely related proteins, recognizing protein fold, and performing classification of music sam-
ples. The algorithms display improved classification performance and run substantially faster than
existing methods.

– 2 –

2 Related Work

The key idea of basic string kernel methods is to apply a mappingΦ(·) to map sequences of variable
length into a fixed-dimensional vector space. In this space astandard classifier such as a support
vector machine (SVM) [16] can then be applied. As SVMs require only inner products between
examples in the feature space, rather than the feature vectors themselves, one can define astring
kernelwhich computes the inner product in the feature space without explicitly computing the
feature vectors:

K(X, Y) = 〈Φ(X),Φ(Y)〉, (1)

whereX, Y ∈ D, D is the set of all sequences composed of elements which take ona finite set of
possible values from the alphabetΣ.

Sequence matching is frequently based on co-occurrence of exact sub-patterns (k-mers, fea-
tures), as in spectrum kernels [10] or substring kernels [17]. Inexact comparison in this frame-
work is typically achieved using different families of mismatch [11] or profile [5] kernels. Both
spectrum-k and mismatch(k,m) kernel directly extract string features from the observedsequence,
X. On the other hand, the profile kernel, proposed by Kuang et al. in [5], builds a profile [3] PX

and uses a similar|Σ|k-dimensional representation, now derived fromPX . Constructing the profile
for each sequence may not be practical in some application domains, since the size of the profile is
dependent on the size of the alphabet set. While for bio-sequences|Σ| = 4 or 20, for music or text
classification|Σ| can potentially be very large, on the order of tens of thousands of symbols.

Some of the most efficient available trie-based algorithms [11, 14] for mismatch kernels have
a strong dependency on the size of alphabet setΣ and the number of allowed mismatches, both of
which need to be restricted in practice to control the complexity of the algorithm. Under the trie-
based framework, the list ofk-mers extracted from given input strings is traversed in a depth-first
search with branches corresponding to all possibleσ ∈ Σ. Each leaf node at depthk corresponds
to a particulark-mer feature (either exact or inexact instance of the observed exact string features)
and contains a list of matching features from each string. The kernel matrix is updated at leaf
nodes with corresponding matching feature counts. The complexity of the trie-based algorithm
for mismatch kernel computation for two stringsX andY is O(km+1|Σ|m(|X| + |Y |)) [11]. The
algorithm complexity depends on the size ofΣ since during a trie traversal, possible substitutions
are drawn fromΣ explicitly; consequently, to control the complexity of thealgorithm we need to
restrict the number of allowed mismatches (m), as well as the alphabet size (|Σ|).

We note that most of existingk-mer string kernels (e.g., mismatch/spectrum kernels, gapped
and wildcard kernels, c.f. [9]) essentially use onlysymbolicHamming-distance based matching,
which may not necessarily reflect underlying similarity/dissimilarity betweenk-mers. For a large
class ofk-mer string kernels, which include mismatch/spectrum, gapped, wildcard kernels, the
matching function,I(α, β), of two k-mersα andβ is independentof the actualk-mers being
matched and depends only on the Hamming distance [7]. As a result, relatedk-mers may not be
matched because their symbolic dissimilarity exceeds the maximum allowed Hamming distance.
This presents a limitation as in many cases similarity relationships are not entirely based on sym-
bolic similarity, e.g., as in matching wordn-grams or amino-acid sequences, where, for instance,
words may be semantically related or amino-acids could share structural or physical properties

– 3 –

not reflected on a symbolic level. Recent work in [7] have introduced linear time algorithms
with alphabet-independentcomplexity for Hamming-distance based matching. This enables effi-
cient computation of a wide class of existing string kernelsfor datasets with large|Σ|. However,
above approaches do not readily extend to the case of a general (non-Hamming) similarity metrics
(e.g., BLOSUM-based scoring functions in biological sequence analysis, or measures of semantic
relatedness between words, etc.) without introducing a high computational cost (e.g., requiring
quadratic or exponential running time as in, for instance, BLOSUM-based substitution kernels). In
this work, we aim to extend the works presented in [7, 9] to the case of general (non-Hamming)
similarity metrics and introduce efficient linear-time generalized string kernel algorithms (Sec-
tions4, 5). We also show empirically that using these generalized similarity kernels provides ef-
fective improvements in practice for a number of challenging classification problems (Section6).

3 Spectrum/Mismatch and General Similarity Kernels

In this section we will first discuss sequence matching with spectrum/mismatch kernels and then
introduce general similarity string kernels as their generalization.

Given a sequenceX with symbols from alphabetΣ the spectrum-kkernel [10] and themis-
match(k,m)kernel [11] induce the following|Σ|k-dimensional representation for the sequenceX

considered as a set ofk-mers:

Φk,m(γ|X) =

(

∑

α∈X

Im(α, γ)

)

γ∈Σk

(2)

whereIm(α, γ) = 1 if α ∈ Nk,m(γ), andNk,m(γ) is themutational neighborhood, the set of allk-
mers that differ fromγ by at mostm mismatches. Note that, by definition, for spectrum-k kernels,
m = 0. Effectively, these are thebag-of-substringsrepresentations, with either exact (spectrum)
or approximate/smoothed (mismatch) counts of substrings present in the sequenceX.

The spectrum/mismatch kernel is then defined as

K(X, Y |k,m) =
∑

γ∈Σk

Φk,m(γ|X)Φk,m(γ|Y) (3)

=
∑

α∈X

∑

β∈Y

∑

γ∈Σk

Im(α, γ)Im(β, γ) (4)

One interpretation of this kernel is that of cumulative pairwise comparison of allk-long sub-
stringsα andβ contained in sequencesX andY , respectively. In the case of mismatch kernels the
level of similarity of each pair of substrings(α, β) is based on the number of identical substrings
their mutational neighborhoodsNk,m(α) andNk,m(β) give rise to,

∑

γ∈Σk Im(α, γ)Im(β, γ). For
the spectrum kernel, this similarity is simply the exact matching ofα andβ.

One can generalize this and allow an arbitrary metric similarity functionS(α, β) to replace the
Hamming similarity

∑

γ∈Σk Im(α, γ)Im(β, γ) → S(α, β) and obtain general similarity kernel:

K(X, Y |k,S) =
∑

α∈X

∑

β∈Y

S(α, β). (5)

– 4 –

Such similarity function can go significantly beyond the relatively simple substring mismatch (sub-
stitution) models mentioned above. However, a drawback of this general representation over the
simple Hamming-similarity based mismatch model is, of course, that the complexity of comparing
two sequences in general becomesquadratic in their lengths,O(|X| · |Y |). On the other hand,
mismatch type of representations can be efficiently evaluated inO(ck,m(|X|+ |Y |)) time [7].

Our goal here is to approach the above process “in reverse”: start with a general similarity
metricS and replace it with a computationally efficient, but approximate, Hamming-type com-
putation. In the following we consider two approaches for incorporatingS(·, ·) into matching
(Sections4, 5), and then evaluate their effectiveness. The first approach(Section4) usesS(·, ·) in-
directly by clustering the original feature set into groupsof similar features. These groups are then
used for matching, with two features matched only if they belong to same group (i.e. are similar
according toS(·, ·)). In the second approach (Section5), based on recent work in similarity-based
hashing in [18], an approximation of the actual values ofS(·, ·) is used for the similarity score
computation. The two approaches allow one either to incorporate non-Hamming similarityS(·, ·)
into similarity evaluation by matching only the features that are similar according toS(·, ·) or to
retain actual (approximate) similarity/distance scores in similarity evaluation.

4 Abstraction-based kernels

In this section we propose a generalization of the string kernels that extends the typically employed
symbolic Hamming (0-1) distance and incorporates general similarity metrics to refine matching
of otherwise symbolically different sequence fragments.

Standard string kernels typically use input sequences directly, i.e., they are defined over the
input alphabet|Σ|. Here we assume that the alphabetΣ is supplemented by a set of featuresF .
For instance, in the case of proteins the 20 amino acids can besupplemented by ordinal features
that describe their physical or chemical properties. Note that the feature set need not be specified
explicitly, it is sufficient to define the similarity metricS(α, β) that reflect symbol similarity in this
feature space.

To incorporate a similarity metricS(α, β) into string kernel framework, one possibility is to in-
troduce an indicator (matching) functionIS(α, β) that models the given scoring metric by defining
a partition over the feature set, which groups similar (according toS(·, ·)) features together. The
indicator functionIS(·, ·) would only match twok-mersα andβ if they belong to the same class,
i.e. are similar according toS(α, β). Partitioning of the feature setF essentially corresponds to
clusteringover the feature set that generates moreabstractentities (features). Similar features that
are grouped together can, for instance, indicate semantic closeness of words in text, or similarity
in terms of physical or structural properties for amino-acids in biological sequences, etc. Grouping
of features into similarity classes might also allow for better generalization over learned sequence
patterns and improve sequence classification performance.

For a given feature setF (e.g., set ofk-mers over alphabetΣ), with similarity relationships
between features inF encoded as a partition overF , i.e. in n disjoint cluster setsC1, . . . , Cn,
⋃

Ci = F . The abstraction/clustering-based kernel, under clusterindicator functionL : F → C,

– 5 –

Input
Sequence

. C1C1 C3 C4

. TV Q A

L()

Abstracted
Sequence

Figure 1: Abstraction-based kernel (F is the same asΣ). Both the input sequenceX and the
abstracted sequenceL(X) can be used simultaneously.

can be defined as

KL(X, Y) =
∑

γ∈F

∑

α∈X

IS(α, γ)
∑

β∈Y

IS(β, γ)

=
∑

α∈X

∑

β∈Y

∑

γ∈F

IS(α, γ)IS(β, γ) (6)

where the indicator function reflects grouping over features induced by similarity function
S(·, ·).

IS(α, β) =

{

1, ifL(α) = L(β)
0, otherwise

(7)

We note that the twok-mersα andβ will be matched only if they belong to the same group,
L(α) = L(β), i.e. α andβ are similar according toS(., .). This allows one to incorporate non-
Hamming similarity relationships betweenk-mers into the similarity/kernel evaluation. Similarity
functionS(α, β) betweenk-mers can be the Euclidean distance between the corresponding real-
valued feature vectors, or may reflect similarity with respect to the physical/structural properties.
Clustering of these feature vectors would then group the original k-mer features into groups ofk-
mers similar according toS(·, ·). We note that this essentially corresponds to a kernel defined over
clustered representationXC = L(X) of the original sequenceX, whereXC is obtained fromX by
mapping original sequence features into corresponding similarity classes (clusters)C1, ...Cn. This
is illustrated in Figure1 for the case of feature spaceF taken as an alphabet set. We note that the
cluster indicator functionL(·) can be obtained by clustering of the feature vectors corresponding
to the original features inF , e.g. rows of the BLOSUM substitution matrix can be used to cluster
individual aminoacids or aminoacidk-mers according to the Euclidean distance/similarityS(·, ·)
between feature vectors. Alternatively, the partition overF can be defined with respect to similarity
S(·, ·) as given by the physical/chemical properties of aminoacids(e.g. hydropathy index). We
will show in the experiments that use of abstraction/clustering kernel improves over using original
protein sequences alone.

5 Similarity/distance-preserving Symbolic Embedding Kernels

While the abstraction/clustering-based kernel described in previous sections essentially uses a fixed
partition over features, one may wish to retain the actual distance/score as given byS(·, ·). For a

– 6 –

given scoring functionS(α, β) that reflects the semantic similarity between sequence elements, a
string kernel can then be defined as in Eq.5.

That definition, however, results in quadratic computationO(|X| · |Y |) complexity. We will
now define a computationally more efficient string kernel based on symbolic sequence embeddings
for which Hamming (0-1) similarity accurately approximatesS(·, ·). This will allow us to develop
a linear time algorithm for computing string kernels with general similarity metrics.

The main idea of our approach is to (1) learn a symbolic embedding E(·) for which the Ham-
ming similarity could approximateS(·, ·), (2) use Hamming-type matching (linear time) algo-
rithms over the symbolic embedding to efficiently evaluate the similarity kernelK(X, Y |S).

To learn a symbolic embedding that approximatesS(·, ·), asimilarity hashing-basedapproach,
as in, for instance [18], could be applied to individual sequence features to obtain abinaryHamming-
space embedded sequence

E(X) = E(x1), ..., E(xn)

for a given input sequenceX = x1, ..., xn of R-dimensional feature vectors, whereE(xi) =
ei1e

i
2 . . . e

i
B is a symbolic Hamming embedding for itemxi in X, with |E(xi)| = B, the num-

ber of bits in a resulting binary embedding ofxi. The Hamming similarity,hα,β, between two
feature embeddingsE(α), andE(β) is proportional to the original similarity scoreS(α, β). The
kernel evaluationK(X, Y |S) (Eq. 5) then reduces to computing Hamming-type string kernels
K ′(E(X), E(Y)) (e.g., spectrum or mismatch) over embedded sequencesE(X), E(Y). For a
typical length of a Hamming embedding (e.g.,B=64), computing the mismatch kernel may be
difficult due to very large equivalent values ofk′ = k · B, m′ = m · B since the complexity of the
best string kernel algorithms depends asO(km) on the values ofk, andm. To solve this problem,
in what follows we will develop a very effective approximation of the mismatch kernel that will
allow efficient inexact matching between embedded sequencerepresentations.

5.1 Approximate Mismatch Kernel for Symbolic Hamming Embeddings

Instead of solving a (kB,mB)-mismatch problem, we will show that a collection ofB simpler
(k,m)-mismatch problems could be solved. This will allow a very efficient inexact matching for
even high-dimensional embeddings,E.

For a given sequence setD, where eachX ∈ D is a sequence ofR-dimensional feature vector,
let E = {E(X) : X ∈ D}. In the following, we describe a kernel measure,Kk(E(X), E(Y)), for
computing similarity between two Hamming embeddingsE(X), E(Y) of the original sequences
X andY . To do this we note that our binary embedding of each sequenceX results in this sequence
being represented as aB × |X| binary matrix, with each columnl being the binary embedding of
thel-th elementxl. The rationale for the choice ofKk below will be discussed in detail in Sec.5.3.

To compare two embeddingsE(X) andE(Y) (i.e., two binary matrices of sizeB × |X|,
B × |Y |), we define a feature mapΦk, from E into aB × 2k dimensional feature spaceΦk : E →
R

B×2k :
Φk(E(X)) =

(

φb
γ (E(X))

)

γ∈{0,1}k,1≤b≤B
(8)

– 7 –

...

0.21

0.19

0.05

V Q A T

.
R ...

0.06

0.09

0.10

...

0.30

0.03

0.15

...

1

1

0

...

1

0

1

B
...

0

1

0

γ1γ2 γ
2k

.

.

M()

Input
Sequence

E()

. . .1 4 0. . .0 2 3

γ1γ2 γ
2k

b = 1 b = B

Φ()

Figure 2: Symbolic embedding for similarity evaluation. For discrete inputs, discrete-to-real map-
pingM(·) is used to obtain sequenceX of R-dim. feature vectors that then embedded intoB-bit
vectors to obtainE(X). Feature mapΦ(E(X)) is then used to obtainB× 2k representation of the
original sequence that is used for similarity evaluation. For the real-valued inputs, the M-step is
not used.

where
φb
γ(E(X)) =

∑

α∈E(X)

I(α[b], γ)

is the number of timesγ occurs in thebth row of E(X) matrix. The kernel is then the dot-product
between corresponding feature maps:

Kk(E(X), E(Y)) = 〈Φk(E(X)),Φk(E(Y))〉. (9)

In Figure2 we illustrate similarity evaluation using similarity-preserving symbolic embedding.
Discrete inputs are first mapped into a sequence ofR-dimensional feature vectors. Those feature
vectors are then mapped into binary vectors to obtain aB×|X| matrix representation of the original
sequence. These binary matrices are then compared usingKk(·, ·).

– 8 –

5.2 Efficient Kernel Computation

We first reduce the kernel computation (Eq.9) to the following form.

Kk(E(X), E(Y)) = 〈Φk(E(X)),Φk(E(Y))〉

=
B
∑

b=1

∑

γ∈{0,1}k





∑

α∈E(X)

I(α[b], γ)
∑

β∈E(Y)

I(β[b], γ)





=
B
∑

b=1

∑

α∈E(X)

∑

β∈E(Y)

I(α[b], β[b]) (10)

=
∑

α∈E(X)

∑

β∈E(Y)

B
∑

b=1

I(α[b], β[b]) (11)

We note that the kernel value above corresponds to the cumulative count of the number of common
rows inα andβ. I.e., for each pair ofB × k submatrices (α,β) the kernel value is incremented by
the number of rows that are identical. Direct use of the Eq.10would result inquadratictime kernel
evaluation. A more efficient approach is to note that the number of pairs ofB×k submatrices (α,β)
fromE(X) andE(Y) that have the samebth row can be computed by running the exact spectrum-
k kernelB times, i.e. for each rowb = 1...B of E(X) andE(Y). This gives a linearO(Bnk)
algorithm for comparing the embedded representationsE(X) andE(Y). This is an improvement
over directly usingO(ckB,mBnk) mismatch kernel algorithm for inexact matching as the above
linear-time row-based comparison between twoB×k submatrices in effect corresponds toinexact
matching of these matrices.

The described algorithm has linear complexity compared to quadratic complexity of evaluating
general kernel of the form as in Equation5. Furthermore, the approach we propose is substantially
different fromtrie-basedapproaches described, for example, in [9] for computing e.g. substitution
kernels that use biologically meaningful similarity measure based on probabilistic substitution
models.

In summary, the proposed algorithms exhibit the following advantages:

• Enhances originaldiscrete/symbolicor real-valued representation by re-representing se-
quence data using different sequence alphabet that captures interrelationships between in-
dividual sequence elements or features (e.g.,k-mers).

• Allow efficient (linear time) matching (Section5.1)

• Incorporate similarity/distanceS(·, ·) between features or sequence elements into matching
which otherwise is typically limited to symbolic matching (symbolic hamming distance)

• Refine matching of otherwise symbolically different sequence elements/features (e.g., dif-
ferent amino-acids in proteins, music samples, as shown in the experiments in Section6)

– 9 –

5.3 Relationship with the Hamming distance and similarity scoresS

In the following we will discuss the relationship between the kernelKk(E(X), E(Y)) (Eq. 10)
computed over similarity-preserving embedding and the original similarity kernel
K(X, Y |S) (Eq.5) that usesS(·, ·).

The resulting kernel valueKk(E(X), E(Y)) is an approximation of the total Hamming simi-
larity between all pairs (α, β) of B × k submatrices

H(E(X)E(Y)) =
∑

α∈E(X)

∑

β∈E(Y)

hαβ (12)

wherehαβ is the Hamming similarity between the twoB × k submatricesα andβ (the number of
corresponding identical bits). The kernel in Eq.11can be written as

Kk(E(X), E(Y)) =
∑

α∈E(X)

∑

β∈E(Y)

B
∑

b=1

I(α[b], β[b]) (13)

=
∑

α∈X

∑

β∈Y

sαβ (14)

(15)

wheresαβ is the number of identical rows inα andβ.
It is easy to see that we have the following relationship betweensαβ, the number of of identical

rows betweenα andβ, andhαβ, the hamming similarity betweenα andβ

max{hαβ − (k − 1)B, 0} ≤ sαβ ≤
hαβ

k
(16)

Using the above relationship betweensαβ andhαβ, we observe that the kernel value in Eq.10
is related to the total Hamming similarityH(E(X), E(Y)), between embeddingsE(X) andE(Y)
as

max{H(E(X), E(Y))− B̂, 0} ≤ K(E(X), E(Y))

≤
H(E(X), E(Y))

k

whereB̂ =
∑

α∈E(X)

∑

β∈E(Y)(k − 1)B (note thatB̂ is bounded above by|X||Y |kB). By the
similarity preserving property ofE, we haveH(E(Y), E(Y)) ∼ S(X, Y). This together with the
above bounds implies that the kernel value in Eq.10 can be used to efficiently evaluate similarity
kernelK(X, Y |S) in Eq.5.

6 Evaluation

We study the performance of our algorithms, in terms of predictive accuracy, on standard bench-
mark datasets for protein sequence analysis and music genreclassification.

– 10 –

We use four standard benchmark datasets to compare with previously published results: the
SCOP dataset (7329 sequences with 2862 labeled) [19] for remote protein homology detection,
the Ding-Dubchak dataset1 (27 folds, 694 sequences) [2, 13] for protein fold recognition, multi-
class remote fold recognition dataset [13], and music genre data2 (10 classes, 1000 sequences
consisting of 13-dim. MFCC feature vectors) [12] for multi-class genre prediction. For protein
sequence classification under the semi-supervised setting, we also use the Swiss-Prot dataset, a
collection of about 100K protein sequences, as an unlabeleddataset, following the setup of [8]. All
experiments are performed on asingle2.8GHz CPU. The datasets used in our experiments and the
supplementary data/code are available athttp://anonymous.edu/generalkernels/ .

6.1 Empirical performance analysis

In this section we show predictive performance for several sequence analysis tasks using our
similarity/distance-preserving symbolic embedding string kernels (Sec.5) and abstraction/ clustering-
based string kernels (Sec.4).

Table 1: Classification performance on fold prediction (multi-class)

Method Error
Top 5
Error

Balanced
Error

Top 5
Balanced
Error

F1
Top 5
F1

Baseline 1: PSI-BLAST [13] 64.80 51.80 70.30 54.30 - -
Baseline 2: Substitution kernel [9] (BLOSUM62) 51.95 27.04 66.17 36.72 34.49 66.27
Baseline 3: Profile (5,7.5) (Swiss-prot) 49.35 20.36 76.67 35.28 26.05 68.09
Mismatch(k=5,m=1) 53.75 29.15 82.75 52.40 16.92 56.67
Mismatch (k=5,m=1) +Abstraction 52.12 24.10 81.76 43.30 22.74 64.30
Spatial sample kernel 48.7 25.08 73.04 44.05 30.57 62.37
Spatial sample kernel (hydropathy) +Abstraction 47.88 19.38 70.81 30.99 32.86 74.57
Semi-supervised Cluster kernel (Swiss-Prot) 48.86 19.54 72.88 34.06 26.59 70.07
Semi-supervised Cluster kernel (Swiss-Prot)
+Abstraction

48.86 18.40 74.87 28.92 27.06 74.24

For protein sequences we use as feature vectors rows of the BLOSUM62 substitution matrices
to represent 20 aminoacids (M step in Fig.2,R=20). In case of the music data, input sequences are
sequences of 13-dim. MFCC features (R=13). For symbolic Hamming embedding we setB=64
and usek-mers withk=5. For abstraction/clustering based kernel, we cluster a set of MFCC into
|Σ| = 2048 clusters; for protein sequence data, 20-dim. BLOSUM score vectors are clustered into
|Σ| = 4 groups. For the experiments on the protein sequences, we incorporate BLOSUM similarity
between aminoacids using abstraction/cluster kernel. Note that we do not use actual distances
between BLOSUM vectors for similarity evaluation. For the music experiments, we compare

1http://ranger.uta.edu/˜chqding/bioinfo.html
2http://opihi.cs.uvic.ca/sound/genres

– 11 –

Table 2: Comparison on Ding and Dubchak benchmark data set

Method Error
Top 5
Error

Balanced
Error

Top 5
Balanced
Error

F1
Top 5
F1

Baseline 1: PSI-BLAST 44.13 - 35.16 - - -
Baseline 2: Substitution kernel [9] (BLOSUM62) 45.43 22.72 48.02 25.05 53.54 75.89
Baseline 3:SVM(D&D) [2] - - 56.5 - - -
Baseline 4: Profile (5,7.5) (Swiss-prot) 36.03 16.19 37.78 18.46 73.03 87.56
Mismatch(5,1) 51.17 22.19 53.22 28.65 61.68 81.68
Mismatch (5,1) + Abstraction 45.95 19.84 50.90 22.35 62.41 85.09
Spectrum (k=3) 47.52 27.94 50.48 30.03 55.25 74.00
Spectrum (k=3) + Abstraction 45.17 24.80 48.25 26.92 57.25 76.12
Semi-supervised Cluster Kernel 29.77 13.32 29.13 13.36 78.17 89.76
Semi-supervised Cluster Kernel + Abstraction 29.77 11.75 28.58 12.22 78.6 90.98

clustering approach to incorporatingS and similarity/distance-preserving Hamming approach that
preserves (approximates) distance according toS.

We consider the tasks of multi-class music genre classification [12], with results in Table3,
and the protein remote homology (superfamily) prediction [10, 5, 4] in Table4. We also include
results for multi-class fold prediction [2, 13] in Table1 and Table2.

On the music classification task (Table3), we observe significant improvements in accuracy us-
ing the distance-preserving kernels. For instance, using distance-preserving embedding improves
error from 38.8% using clustering (which does not retain actual distance) to 34.1%. Similarly,
in the case of spatial kernel (double-(1,5)), we observe reduction in error from 29.4% to 24.9%
when using the distance-preserving embedding. The obtained error rate (24.9%) on this dataset
compares well with the state-of-the-art results based on the same signal representation in [12].

The remote protein homology detection, as evident from Table4, which incorporates biological
distances (BLOSUM scoring function) into kernel computation, effectively improves over tradi-
tional string kernels. For instance, we observe improvement in the average ROC-50 score from
41.92 to46.32 in the case of the mismatch kernel. We also observe that usingthe semi-supervised
neighborhood kernel approach [19] with distance-based kernel improves over standard mismatch
kernel-based cluster kernel. For example, for the neighborhood kernel computed on the unlabeled
subset (4000 sequences) of the SCOP dataset, using abstraction/ clustering-based kernel (BLO-
SUM) achieves the mean ROC50 70.14 compared to ROC50 67.91 using the standard mismatch
string kernel.

For multi-class protein fold recognition (Table1), we similarly observe improvements in per-
formance for clustering-based kernel over standard stringkernels. The top-5 balanced error of
28.92% for the clustering-based mismatch neighborhood kernel using Swiss-Prot compares well
with the best error rate of35.28% for the state-of-the-art profile kernel [5, 13].

– 12 –

Table 3: Classification performance on music genre classification (multi-class)
Method Error

Spectrum (Abstraction) 38.8
Mismatch (5,2) (Abstraction) 35.6
Double (1,5) (Abstraction) 29.4
Spectrum (Embedding) 34.1
Double(1,5) (Abstraction + embedding)24.9

Table 4: Classification performance on protein remote homology prediction
Method Baseline +Abstraction

(BLOSUM)
Spectrum (n-gram) [10] 27.91 35.14
Mismatch [11] 41.92 46.35
Spatial sample [6] 50.12 52.00
Semi-supervised
Cluster kernel [19]

67.91 70.14

7 Conclusions

We presented new linear-time algorithms for inexact matching of the discrete- and continuous- val-
ued string representations under general similarity metrics. The proposed approach uses similarity/distance-
preserving embedding with string kernels to improve sequence classification. On four benchmark
datasets, including music classification and biological sequence analysis problems, our algorithms
effectively improve over string kernel baselines, while retaining efficient string kernel running
times.

– 13 –

References

[1] J. Cheng and P. Baldi. A machine learning information retrieval approach to protein fold
recognition.Bioinformatics, 22(12):1456–1463, June 2006.1

[2] C. H. Ding and I. Dubchak. Multi-class protein fold recognition using support vector ma-
chines and neural networks.Bioinformatics, 17(4):349–358, 2001.10, 11

[3] M. Gribskov, A. McLachlan, and D. Eisenberg. Profile analysis: detection of distantly related
proteins.Proceedings of the National Academy of Sciences, 84:4355–4358, 1987.2

[4] T. Jaakkola, M. Diekhans, and D. Haussler. A discriminative framework for detecting remote
protein homologies. InJournal of Computational Biology, volume 7, pages 95–114, 2000.
11

[5] R. Kuang, E. Ie, K. Wang, K. Wang, M. Siddiqi, Y. Freund, andC. S. Leslie. Profile-based
string kernels for remote homology detection and motif extraction. InCSB, pages 152–160,
2004.1, 2, 11

[6] P. Kuksa, P.-H. Huang, and V. Pavlovic. Fast protein homology and fold detection with sparse
spatial sample kernels. InICPR 2008, 2008.12

[7] P. Kuksa, P.-H. Huang, and V. Pavlovic. Scalable algorithms for string kernels with inexact
matching. InNIPS, 2008.1, 2, 3, 4

[8] P. Kuksa, P.-H. Huang, and V. Pavlovic. Efficient use of unlabeled data for protein sequence
classification: a comparative study.BMC Bioinformatics, 10(Suppl 4):S2, 2009. Impact
factor: 3.78.10

[9] C. Leslie and R. Kuang. Fast string kernels using inexact matching for protein sequences.J.
Mach. Learn. Res., 5:1435–1455, 2004.2, 3, 8, 10, 11

[10] C. S. Leslie, E. Eskin, and W. S. Noble. The spectrum kernel: A string kernel for SVM
protein classification. InPacific Symposium on Biocomputing, pages 566–575, 2002.2, 3,
11, 12

[11] C. S. Leslie, E. Eskin, J. Weston, and W. S. Noble. Mismatch string kernels for SVM protein
classification. InNIPS, pages 1417–1424, 2002.1, 2, 3, 12

[12] T. Li, M. Ogihara, and Q. Li. A comparative study on content-based music genre classifica-
tion. In SIGIR ’03, pages 282–289, New York, NY, USA, 2003. ACM.10, 11

[13] I. Melvin, E. Ie, J. Weston, W. S. Noble, and C. Leslie. Multi-class protein classification
using adaptive codes.J. Mach. Learn. Res., 8:1557–1581, 2007.10, 11

[14] J. Shawe-Taylor and N. Cristianini.Kernel Methods for Pattern Analysis. Cambridge Uni-
versity Press, New York, NY, USA, 2004.1, 2

– 14 –

[15] S. Sonnenburg, G. R̈atsch, and B. Scḧolkopf. Large scale genomic sequence SVM classifiers.
In ICML ’05, pages 848–855, New York, NY, USA, 2005.1

[16] V. N. Vapnik. Statistical Learning Theory. Wiley-Interscience, September 1998.2

[17] S. V. N. Vishwanathan and A. Smola. Fast kernels for string and tree matching.Advances in
Neural Information Processing Systems, 15, 2002.2

[18] Y. Weiss, A. Torralba, and R. Fergus. Spectral hashing. In D. Koller, D. Schuurmans, Y. Ben-
gio, and L. Bottou, editors,Advances in Neural Information Processing Systems 21, pages
1753–1760. 2009.4, 6

[19] J. Weston, C. Leslie, E. Ie, D. Zhou, A. Elisseeff, and W. S. Noble. Semi-supervised protein
classification using cluster kernels.Bioinformatics, 21(15):3241–3247, 2005.10, 11, 12

