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ABSTRACT

String kernel-based machine learning methods have yiejdeat success in practical tasks of
structured/sequential data analysis. In this paper wegs®p novel computational framework that
uses general similarity metrics and distance-presernvinigeeldings with string kernels to improve
sequence classification. An embedding step, a distansespiag bitstring mapping, is used to ef-
fectively capture similarity between otherwise symbdlicdifferent sequence elements. We show
that it is possible to retain computational efficiency ofrgjrkernels while using this more “pre-
cise” measure of similarity. We then demonstrate that onnaloar of sequence classification tasks
such as music, and biological sequence classification, @ivenmethod can substantially improve
upon state-of-the-art string kernel baselines.



1 Introduction

Analysis of large scale sequential data has become an iemadsk in machine learning and
data mining, inspired by applications such as biologicgsace analysis, text and audio mining.
Classification of string data, sequences of discrete symhassattracted particular interest and has
led to a number of new algorithms,[5, 11, 15]. These algorithms often exhibit state-of-the-art
performance on tasks such as protein superfamily and f@digron, music genre classification
and document topic elucidation.

A family of state-of-the-art approaches to scoring sinityabetween pairs of sequences relies
on fixed length, substring spectral representations anddtien of mismatch kernels, c.f5[11].
There, a sequence is represented as the spectra (counigtairasubstringsi-mers) contained
within a sequence. The similarity score is established lagtear approximate matches bimers.
Initial work, e.g., [L1, 14], has demonstrated that this similarity can be computeagusie-based
approaches i (k™3™ (| X|+|Y|)), for stringsX andY” with symbols from alphabét and up
to m mismatches. More recently/][introduced linear time algorithms with alphabet-indegpent
complexity applicable to computation of a large class o$&xg string kernels.

However, typical spectral models (e.g., mismatch/spetkearnels, gapped and wildcard ker-
nels) rely onsymbolic Hamming-distandeased matching of-mers. This Hamming matching
may not necessarily reflect the underlying (e.g., phys&atjlarity between sequence fragments.
For example, in protein sequence analysis different p&dsgrabols (amino acids) induce different
similarity levels, a consequence of particular physicatteemical properties. Similarly, matching
of n-grams of words should reflect semantic similarity and ndy @mple character-level dif-
ferences. Unfortunately, traditional string kernel agmttes do not readily extend to the case
of general non-Hamming similarity metrics without intrailug a high computational cost (e.qg.,
requiring quadratic or exponential running time).

In this work we propose novdinear-time algorithms for modeling sequences under inexact
matching framework with general similarity metri§s-, -) that exhibit improved performance on
a variety of distinct classification tasks. In particulag present a novel computational framework
that (1) accepts a general (non-Hamming) similarity mefti¢ -), (2) approximately preserves
S(+,-) through symbolic binary embedding fmers, and (3) uses Hamming-type matching on
the embedded representation with string kernels (lineas-algorithms) to improve sequence clas-
sification. The adaptive embedding step, which learns tindagity/distance-preserving embed-
dings, is used to effectively capture similarity intertelaships between otherwise symbolically
dissimilar sequence elements/features.

We demonstrate benefits of our algorithms on many challgnggguence classification prob-
lems, bothdiscrete-andcontinuousvalued, such as detecting homology (evolutionary sintyar
of remotely related proteins, recognizing protein fold] @erforming classification of music sam-
ples. The algorithms display improved classification penfance and run substantially faster than
existing methods.



2 Related Work

The key idea of basic string kernel methods is to apply a nmappi-) to map sequences of variable
length into a fixed-dimensional vector space. In this spast@adard classifier such as a support
vector machine (SVM)I6] can then be applied. As SVMs require only inner productsvben
examples in the feature space, rather than the featurergdbmselves, one can definstang
kernelwhich computes the inner product in the feature space witbrplicitly computing the
feature vectors:

K(X,Y) = (B(X),®(Y)), (1)

whereX,Y € D, D is the set of all sequences composed of elements which ta&dioite set of
possible values from the alphabet

Sequence matching is frequently based on co-occurrenceact sub-patternsk{mers, fea-
tures), as in spectrum kernels(] or substring kernels1[/]. Inexact comparison in this frame-
work is typically achieved using different families of miatoh [L1] or profile [5] kernels. Both
spectrumk and mismatchi{;m) kernel directly extract string features from the obserseguence,
X. On the other hand, the profile kernel, proposed by Kuang @b &), builds a profile B] Px
and uses a simildE|*-dimensional representation, now derived frét. Constructing the profile
for each sequence may not be practical in some applicatioraohs, since the size of the profile is
dependent on the size of the alphabet set. While for bio-se@se:| = 4 or 20, for music or text
classification>| can potentially be very large, on the order of tens of thodsai symbols.

Some of the most efficient available trie-based algorithivis T4] for mismatch kernels have
a strong dependency on the size of alphabetsmtd the number of allowed mismatches, both of
which need to be restricted in practice to control the comiplef the algorithm. Under the trie-
based framework, the list dFmers extracted from given input strings is traversed ing@toérst
search with branches corresponding to all possibée Y. Each leaf node at depthcorresponds
to a particularc-mer feature (either exact or inexact instance of the oleseexact string features)
and contains a list of matching features from each stringe Kérnel matrix is updated at leaf
nodes with corresponding matching feature counts. The ity of the trie-based algorithm
for mismatch kernel computation for two stringsandY” is O (k™3™ (| X| + |Y])) [11]. The
algorithm complexity depends on the sizeXo&ince during a trie traversal, possible substitutions
are drawn fromx explicitly; consequently, to control the complexity of takgorithm we need to
restrict the number of allowed mismatches)( as well as the alphabet siZ&().

We note that most of existing-mer string kernels (e.g., mismatch/spectrum kernelspeap
and wildcard kernels, c.f9]) essentially use onlgymbolicHamming-distance based matching,
which may not necessarily reflect underlying similaritg&imilarity betweerk-mers. For a large
class ofk-mer string kernels, which include mismatch/spectrum,pgalp wildcard kernels, the
matching function,/(«, 8), of two k-mersa and § is independenbf the actualk-mers being
matched and depends only on the Hamming distanceAs a result, related-mers may not be
matched because their symbolic dissimilarity exceeds te@mum allowed Hamming distance.
This presents a limitation as in many cases similarity i@ships are not entirely based on sym-
bolic similarity, e.g., as in matching worg-grams or amino-acid sequences, where, for instance,
words may be semantically related or amino-acids couldeskauctural or physical properties
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not reflected on a symbolic level. Recent work i} have introduced linear time algorithms
with alphabet-independemiomplexity for Hamming-distance based matching. This ksaéffi-
cient computation of a wide class of existing string kerrieisdatasets with large:|. However,
above approaches do not readily extend to the case of a §émanaHamming) similarity metrics
(e.g., BLOSUM-based scoring functions in biological segqeeanalysis, or measures of semantic
relatedness between words, etc.) without introducing & b@mputational cost (e.g., requiring
guadratic or exponential running time as in, for instanceQBUM-based substitution kernels). In
this work, we aim to extend the works presentedind] to the case of general (non-Hamming)
similarity metrics and introduce efficient linear-time gealized string kernel algorithms (Sec-
tions4, 5). We also show empirically that using these generalizedaiity kernels provides ef-
fective improvements in practice for a number of challeggitassification problems (Secti@in

3 Spectrum/Mismatch and General Similarity Kernels

In this section we will first discuss sequence matching wacsrum/mismatch kernels and then
introduce general similarity string kernels as their gahzation.

Given a sequenc& with symbols from alphabet the spectrum-kkernel [L0] and themis-
match(k,mkernel [L1] induce the following|X|*-dimensional representation for the sequeice
considered as a set bfmers:

Opn(7X) = <ZI ) (2)
yeXk

aeX

wherel,, (o, ) = 1if o € Ny, (), andNy () is themutational neighborhogdhe set of alk-
mers that differ fromy by at mostn mismatches. Note that, by definition, for spectrérkernels,
m = 0. Effectively, these are thieag-of-substringsepresentations, with either exact (spectrum)
or approximate/smoothed (mismatch) counts of substringsgmt in the sequenceé.

The spectrum/mismatch kernel is then defined as

K(X,Yk,m) = ) @pm(y]X)Ppm(3]Y) (3)

yeXE

= > D> Lula, ) In(B.7) 4)

a€X BeY yexk

One interpretation of this kernel is that of cumulative pase comparison of alk-long sub-
stringsa andS contained in sequenceéSandY’, respectively. In the case of mismatch kernels the
level of similarity of each pair of substrindgs, 3) is based on the number of identical substrings
their mutational neighborhoods; ,,,(«v) and Ny ,(3) give rise 10,3 v« L (v, v) I (B, 7). For
the spectrum kernel, this similarity is simply the exactchatg ofa andf.

One can generalize this and allow an arbitrary metric shityifunction S(«, /3) to replace the
Hamming similarity) v In(c, 7)1 (8,7) — S(a, ) and obtain general similarity kernel:

KX YkS)=> > S, 5)

aceX peYy
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Such similarity function can go significantly beyond thet®dely simple substring mismatch (sub-
stitution) models mentioned above. However, a drawbackisfdeneral representation over the
simple Hamming-similarity based mismatch model is, of seythat the complexity of comparing
two sequences in general becongemdraticin their lengths,O(|X| - |Y|). On the other hand,
mismatch type of representations can be efficiently evatliastO ¢y, ,.,(|.X| + |Y])) time [7].

Our goal here is to approach the above process “in reversait with a general similarity
metric S and replace it with a computationally efficient, but appnoate, Hamming-type com-
putation. In the following we consider two approaches faromporatingS(-, -) into matching
(Sectiond4, 5), and then evaluate their effectiveness. The first appr{ettiond) usessS(-, -) in-
directly by clustering the original feature set into grogpsimilar features. These groups are then
used for matching, with two features matched only if theyohglto same group (i.e. are similar
according taS(-, -)). In the second approach (Secti®y based on recent work in similarity-based
hashing in 8], an approximation of the actual values $f-, -) is used for the similarity score
computation. The two approaches allow one either to incatpanon-Hamming similarity (-, -)
into similarity evaluation by matching only the featureattare similar according t§(-, ) or to
retain actual (approximate) similarity/distance scoresimilarity evaluation.

4 Abstraction-based kernels

In this section we propose a generalization of the stringédsrthat extends the typically employed
symbolic Hamming (0-1) distance and incorporates genaralasity metrics to refine matching
of otherwise symbolically different sequence fragments.

Standard string kernels typically use input sequencesttiire.e., they are defined over the
input alphabet|. Here we assume that the alphabkis supplemented by a set of featutgs
For instance, in the case of proteins the 20 amino acids caunfg@emented by ordinal features
that describe their physical or chemical properties. Nioé the feature set need not be specified
explicitly, it is sufficient to define the similarity metr&(«, 5) that reflect symbol similarity in this
feature space.

To incorporate a similarity metri§(«, 3) into string kernel framework, one possibility is to in-
troduce an indicator (matching) functidg(«, ) that models the given scoring metric by defining
a partition over the feature set, which groups similar (adiog to S(-, -)) features together. The
indicator function/s(-, -) would only match twd:-mersa and g if they belong to the same class,
i.e. are similar according t§(«, 3). Partitioning of the feature sét essentially corresponds to
clusteringover the feature set that generates naistractentities (features). Similar features that
are grouped together can, for instance, indicate semdoBermess of words in text, or similarity
in terms of physical or structural properties for aminodaadn biological sequences, etc. Grouping
of features into similarity classes might also allow forteegeneralization over learned sequence
patterns and improve sequence classification performance.

For a given feature sef (e.g., set ofc-mers over alphabet), with similarity relationships
between features iff encoded as a partition ovéef, i.e. inn disjoint cluster setg’;,...,C,,

U C; = F. The abstraction/clustering-based kernel, under clusticator functionL : 7 — C,
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Figure 1: Abstraction-based kernek (is the same a¥). Both the input sequenc& and the
abstracted sequenég X ) can be used simultaneously.

can be defined as

KL(X7Y) = Z Z I‘S'(O‘v’}/) Z]S(B’V)

yeF aeX BeY
=33 Is(a)Is(8.7) 6)
acX BeY yeF

where the indicator function reflects grouping over feagureluced by similarity function
S(-, ).

0, otherwise

[45(@;6) _ { l,z‘fL(oz) = L(ﬁ) (7)

We note that the twé-mersa and s will be matched only if they belong to the same group,
L(a) = L(p), i.e. a and g are similar according t&(.,.). This allows one to incorporate non-
Hamming similarity relationships betweérmers into the similarity/kernel evaluation. Similarity
function S(«, 3) betweenk-mers can be the Euclidean distance between the corresppredtl-
valued feature vectors, or may reflect similarity with regge the physical/structural properties.
Clustering of these feature vectors would then group ther@ig-mer features into groups éf
mers similar according t8(-, -). We note that this essentially corresponds to a kernel dtwaer
clustered representatiofi: = L(X) of the original sequenc¥, whereX is obtained fromX by
mapping original sequence features into correspondingasity classes (clusterg);, ...C,,. This
is illustrated in Figurel for the case of feature spagétaken as an alphabet set. We note that the
cluster indicator functiori.(-) can be obtained by clustering of the feature vectors cooretipg
to the original features itF, e.g. rows of the BLOSUM substitution matrix can be used tstelu
individual aminoacids or aminoacic¢mers according to the Euclidean distance/similasity, -)
between feature vectors. Alternatively, the partitionrafean be defined with respect to similarity
S(-,-) as given by the physical/chemical properties of aminoads. hydropathy index). We
will show in the experiments that use of abstraction/clustekernel improves over using original
protein sequences alone.

5 Similarity/distance-preserving Symbolic Embedding Kernes

While the abstraction/clustering-based kernel describ@ddvious sections essentially uses a fixed
partition over features, one may wish to retain the actusthdice/score as given (-, -). For a
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given scoring functiors («, 3) that reflects the semantic similarity between sequenceesitana
string kernel can then be defined as in%q.

That definition, however, results in quadratic computatitihX'| - [Y|) complexity. We will
now define a computationally more efficient string kernedabssn symbolic sequence embeddings
for which Hamming (0-1) similarity accurately approximsu# -, -). This will allow us to develop
alinear time algorithm for computing string kernels with generahgarity metrics.

The main idea of our approach is to (1) learn a symbolic emibgdtl(-) for which the Ham-
ming similarity could approximaté&(-,-), (2) use Hamming-type matching (linear time) algo-
rithms over the symbolic embedding to efficiently evaluatgimilarity kernel (X, Y'|S).

To learn a symbolic embedding that approximaiés -), asimilarity hashing-basedpproach,
asin, for instancel[d], could be applied to individual sequence features to al@thinaryHamming-
space embedded sequence

E(X) = E(xy), ..., E(x,)

for a given input sequenc& = x4, ...,x, of R-dimensional feature vectors, whefz;) =
eteh ... ek is a symbolic Hamming embedding for item in X, with |E(z;)| = B, the num-
ber of bits in a resulting binary embedding of The Hamming similarity, s, between two
feature embeddingB(«), and E(3) is proportional to the original similarity sco&(«, 5). The
kernel evaluationk’ (X, Y'|S) (Eg. 5) then reduces to computing Hamming-type string kernels
K'(E(X),E(Y)) (e.g., spectrum or mismatch) over embedded sequeki¢c&y, £(Y). For a
typical length of a Hamming embedding (e.#764), computing the mismatch kernel may be
difficult due to very large equivalent values/of= k - B, m" = m - B since the complexity of the
best string kernel algorithms depends’d&™) on the values ok, andm. To solve this problem,
in what follows we will develop a very effective approxinaii of the mismatch kernel that will
allow efficient inexact matching between embedded sequ&presentations.

5.1 Approximate Mismatch Kernel for Symbolic Hamming Embeddings

Instead of solving ak(B,m B)-mismatch problem, we will show that a collection Bf simpler
(k,m)-mismatch problems could be solved. This will allow a veffyceent inexact matching for
even high-dimensional embeddings,

For a given sequence sBt where eachX € D is a sequence dk-dimensional feature vector,
let€ = {E(X) : X € D}. In the following, we describe a kernel measukg( £ (X ), E(Y)), for
computing similarity between two Hamming embeddidgsX ), £(Y) of the original sequences
X andY'. To do this we note that our binary embedding of each sequEnesults in this sequence
being represented as/ax | X | binary matrix, with each columhbeing the binary embedding of
thel-th elementr;. The rationale for the choice @, below will be discussed in detail in See3.

To compare two embeddings(X) and E(Y) (i.e., two binary matrices of siz& x |X|,

B x |Y]), we define a feature mab, from £ into a B x 2* dimensional feature spadg, : £ —
RBXQ"':

(I)k<E(X>) = ((b{)y (E(X)))we{o,l}k,lngB (8)
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Figure 2: Symbolic embedding for similarity evaluationrBgscrete inputs, discrete-to-real map-
ping M (-) is used to obtain sequenéé of R-dim. feature vectors that then embedded iBtdit
vectors to obtair’(X). Feature ma@(E(X)) is then used to obtai® x 2* representation of the
original sequence that is used for similarity evaluatioor the real-valued inputs, the M-step is
not used.

where

A(EX) = Y Iafb]7)

a€E(X)

is the number of times occurs in theé) row of £(X) matrix. The kernel is then the dot-product
between corresponding feature maps:

Kp(E(X), E(Y)) = (®x(E(X)), ®c(E(Y))). (9)

In Figure2 we illustrate similarity evaluation using similarity-gerving symbolic embedding.
Discrete inputs are first mapped into a sequencB-dimensional feature vectors. Those feature
vectors are then mapped into binary vectors to obta#naX | matrix representation of the original
sequence. These binary matrices are then compared K3ing ).



5.2 Efficient Kernel Computation

We first reduce the kernel computation (8o the following form.

K (E(X),E(Y)) = (Pe(E(X)), Pr(E(Y)))

=3 > | X felbly Yo 10
b=1 v€{0,1}} \acE(X) BeE(Y)
=>. I(afb], B[b]) (10)

= > I(afb], Bb]) (11)

We note that the kernel value above corresponds to the ctiveut@unt of the number of common
rows ina andg. l.e., for each pair oB x k& submatricesd,3) the kernel value is incremented by
the number of rows that are identical. Direct use of thelEgvould result inquadratictime kernel
evaluation. A more efficient approach is to note that the remobpairs ofB x & submatricesd,3)
from E(X) andE(Y) that have the samigh row can be computed by running the exact spectrum-
k kernel B times, i.e. for each row = 1...B of E(X) andE(Y). This gives a lineaO(Bnk)
algorithm for comparing the embedded representatiofis) and £(Y"). This is an improvement
over directly usingO(cxp.mpnk) mismatch kernel algorithm for inexact matching as the above
linear-time row-based comparison between g k& submatrices in effect correspondsrexact
matching of these matrices.

The described algorithm has linear complexity comparedismlcatic complexity of evaluating
general kernel of the form as in EquatibnFurthermore, the approach we propose is substantially
different fromtrie-basedapproaches described, for example,9hfpr computing e.g. substitution
kernels that use biologically meaningful similarity measbased on probabilistic substitution
models.

In summary, the proposed algorithms exhibit the followindgantages:

e Enhances originatliscrete/symbolior real-valuedrepresentation by re-representing se-
guence data using different sequence alphabet that captiegrelationships between in-
dividual sequence elements or features (é-gners).

o Allow efficient (linear time) matching (Sectidn 1)

e Incorporate similarity/distancé(-, -) between features or sequence elements into matching
which otherwise is typically limited to symbolic matchingy(bolic hamming distance)

¢ Refine matching of otherwise symbolically different seqeeatements/features (e.g., dif-
ferent amino-acids in proteins, music samples, as showreiexperiments in Sectids)



—9-—

5.3 Relationship with the Hamming distance and similarity scoresS

In the following we will discuss the relationship betweee tkernel K, (E(X), E(Y)) (Eg. 10)
computed over similarity-preserving embedding and thgial similarity kernel
K(X,Y|S) (Eq.5) that usesS(-, -).

The resulting kernel valu&,(E(X), £(Y)) is an approximation of the total Hamming simi-
larity between all pairsd, 5) of B x k submatrices

H(E(X = > > hag (12)

a€E(X) BEE(Y)

whereh, s is the Hamming similarity between the twi® x & submatricesy and s (the number of
corresponding identical bits). The kernel in Ed.can be written as

K (BE(X = > > ZI (13)

a€E(X) BEE(Y) b=1
=D D sas (14)
aeX peY

(15)

wheres, s is the number of identical rows im and.
It is easy to see that we have the following relationship leetw, s, the number of of identical
rows betweern and, andh, s, the hamming similarity betweemand g

h
max{has — (k — 1)B,0} < 505 < Zﬁ (16)

Using the above relationship betweey andh,z, we observe that the kernel value in B
is related to the total Hamming similarity (£(X), E(Y")), between embeddings(X ) andE(Y")
as

max{H(E(X), E(Y)) - B,0} < K(E(X), E(Y))
H(E(X),E(Y))
K

whereB = 3" px) Y pery (k — 1) B (note thatB is bounded above byX||Y'|kB). By the
similarity preserving property af, we haveH (E(Y), E(Y)) ~ S(X,Y). This together with the
above bounds implies that the kernel value in Egcan be used to efficiently evaluate similarity
kernel K(X,Y|S) in Eq.5.

<

6 Evaluation

We study the performance of our algorithms, in terms of mtag accuracy, on standard bench-
mark datasets for protein sequence analysis and music gessification.
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We use four standard benchmark datasets to compare witfopséy published results: the
SCOP dataset (7329 sequences with 2862 labeigd)f¢r remote protein homology detection,
the Ding-Dubchak datasef27 folds, 694 sequences),[13] for protein fold recognition, multi-
class remote fold recognition datasef], and music genre datg10 classes, 1000 sequences
consisting of 13-dim. MFCC feature vectors)’[ for multi-class genre prediction. For protein
sequence classification under the semi-supervised settim@lso use the Swiss-Prot dataset, a
collection of about 100K protein sequences, as an unlalggesset, following the setup of]f All
experiments are performed osiagle2.8G Hz CPU. The datasets used in our experiments and the
supplementary data/code are availablbetgi://anonymous.edu/generalkernels/

6.1 Empirical performance analysis

In this section we show predictive performance for seveegluence analysis tasks using our
similarity/distance-preserving symbolic embeddingstkernels (Se&) and abstraction/ clustering-
based string kernels (Se®.

Table 1. Classification performance on fold prediction (iircikss)

Top 5

Method Error Top 5 Balanced Barl)anced F1
Error Error

Error
Baseline 1: PSI-BLASTIJ] 64.80 51.80 70.30 54.30 -
Baseline 2: Substitution kerned][(BLOSUM®62) 51.95 27.04 66.17 36.72 34.49 66.2
Baseline 3: Profile (5,7.5) (Swiss-prot) 49.35 20.36 76.67 .285 26.05 68.09
Mismatchg=5,m=1) 53.75 29.15 82.75 52.40 16.92 56.6°
Mismatch (k=5,m=1) +Abstraction 52.12 24.10 81.76 43.30 22.74 64.3(
Spatial sample kernel 48.7 25.08 73.04 44.05 30.57 62.
Spatial sample kernel (hydropathy) +Abstraction 47.88 1288 70.81 30.99 32.86 74.57
Semi-supervised Cluster kernel (Swiss-Prot) 48.86 19.548872 34.06 26.59 70.07

Semi-supervised Cluster kernel (Swiss-Prot)
+Abstraction

48.86 18.40 74.87 28.92 27.06 74.24

For protein sequences we use as feature vectors rows of th&BMB2 substitution matrices
to represent 20 aminoacidd/(step in Fig2, R=20). In case of the music data, input sequences are
sequences of 13-dim. MFCC featurds<13). For symbolic Hamming embedding we $&t64
and usek-mers withk=5. For abstraction/clustering based kernel, we clustet afSMFCC into
|X| = 2048 clusters; for protein sequence data, 20-dim. BLOSUM scoc&ove are clustered into
|X| = 4 groups. For the experiments on the protein sequences, wmrate BLOSUM similarity
between aminoacids using abstraction/cluster kernel.e Nt we do not use actual distances
between BLOSUM vectors for similarity evaluation. For thesiuexperiments, we compare

Thttp://ranger.uta.edu/ chgding/bioinfo.html
2http://opihi.cs.uvic.ca/sound/genres
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Table 2: Comparison on Ding and Dubchak benchmark data set

Top 5
Method Error Top 5| Balanced Baﬁ)anced F1 Tops
Error | Error F1
Error
Baseline 1: PSI-BLAST 4413 - 35.16 - - -
Baseline 2: Substitution kernel][(BLOSUMG62) | 45.43| 22.72 | 48.02 25.05 53.54| 75.89
Baseline 3:SVM(D&D) [ 2] - - 56.5 - - -
Baseline 4: Profile (5,7.5) (Swiss-prot) 36.03| 16.19| 37.78 18.46 73.03| 87.56
Mismatch(5,1) 51.17| 22.19| 53.22 28.65 61.68| 81.68
Mismatch (5,1) + Abstraction 45.95| 19.84 | 50.90 22.35 62.41| 85.09
Spectrum £=3) 47.52| 27.94| 50.48 30.03 55.25| 74.00
Spectrum (k=3) + Abstraction 45.17| 24.80| 48.25 26.92 57.25| 76.12
Semi-supervised Cluster Kernel 29.77| 13.32| 29.13 13.36 78.17| 89.76
Semi-supervised Cluster Kernel + Abstraction | 29.77| 11.75| 28.58 12.22 78.6 | 90.98

clustering approach to incorporatisgand similarity/distance-preserving Hamming approach tha
preserves (approximates) distance according. to

We consider the tasks of multi-class music genre classoitgi 2], with results in Table3,
and the protein remote homology (superfamily) predictibny b, 4] in Table4. We also include
results for multi-class fold predictior2[ 13] in Table1 and Table2.

On the music classification task (Taldle we observe significant improvements in accuracy us-
ing the distance-preserving kernels. For instance, usstgrite-preserving embedding improves
error from 38.8% using clustering (which does not retainuakctlistance) to 34.1%. Similarly,
in the case of spatial kernel (double-(1,5)), we observeggon in error from 29.4% to 24.9%
when using the distance-preserving embedding. The oldtamer rate £4.9%) on this dataset
compares well with the state-of-the-art results based esdme signal representation ir?].

The remote protein homology detection, as evident fromdéblhich incorporates biological
distances (BLOSUM scoring function) into kernel computatieffectively improves over tradi-
tional string kernels. For instance, we observe improvenrethe average ROC-50 score from
41.92 to46.32 in the case of the mismatch kernel. We also observe that tistngemi-supervised
neighborhood kernel approachd with distance-based kernel improves over standard migmat
kernel-based cluster kernel. For example, for the neididmmd kernel computed on the unlabeled
subset ( 4000 sequences) of the SCOP dataset, using alositatiistering-based kernel (BLO-
SUM) achieves the mean ROC50 70.14 compared to ROC50 67.9] thsirstandard mismatch
string kernel.

For multi-class protein fold recognition (Tablg, we similarly observe improvements in per-
formance for clustering-based kernel over standard skergels. The top-5 balanced error of
28.92% for the clustering-based mismatch neighborhood kern@lguSiwiss-Prot compares well
with the best error rate &f5.28% for the state-of-the-art profile kernél,[13].
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Table 3: Classification performance on music genre classdicémulti-class)

Method

Error

Spectrum (Abstraction)

Mismatch (5,2) (Abstraction)

Double (1,5) (Abstraction)
Spectrum (Embedding)

38.8

35.6

29.4
34.1

Double(1,5) (Abstraction + embeddingR4.9

Table 4. Classification performance on protein remote hogyoprediction

Method Baseline +Abstraction
(BLOSUM)

Spectrum (n-gram)1[0] 27.91 35.14

Mismatch [L1] 41.92 46.35

Spatial sampled] 50.12 52.00

Semi-supervised 67.91 20.14

Cluster kernel 19

7 Conclusions

We presented new linear-time algorithms for inexact matghbif the discrete- and continuous- val-

ued string representations under general similarity wetiihe proposed approach uses similarity/distance-
preserving embedding with string kernels to improve sege@fassification. On four benchmark
datasets, including music classification and biologicgue@ace analysis problems, our algorithms
effectively improve over string kernel baselines, whiléaneing efficient string kernel running

times.
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