
Efficient motif finding algorithms for large-alphabet inputs

Pavel P. Kuksa1, Vladimir Pavlovic∗1

1 Department of Computer Science, Rutgers University, Piscataway, NJ 08854, USA

Email: Pavel P. Kuksa - pkuksa@cs.rutgers.edu; Vladimir Pavlovic∗- vladimir@cs.rutgers.edu;

∗Corresponding author

Abstract

Background: We consider the problem of identifying motifs, recurring or conserved patterns, in the biological

sequence data sets. To solve this task, we present a new deterministic algorithm for finding patterns that are

embedded as exact or inexact instances in all or most of the input strings.

Results: The proposed algorithm (1) improves search efficiency compared to existing algorithms, and (2) scales

well with the size of alphabet. On a synthetic planted DNA motif finding problem our algorithm is over 10x

more efficient than MITRA [5], PMSPrune [10], and RISOTTO [6] for long motifs. Improvements are orders of

magnitude higher in the same setting with large alphabets. On benchmark TF-binding site problems (FNP,

CRP, LexA) we observed reduction in running time of over 12x, with high detection accuracy. The algorithm

was also successful in rapidly identifying protein motifs in Lipocalin, Zinc metallopeptidase, and supersecondary

structure motifs for Cadherin and Immunoglobin families.

Conclusions: Our algorithm reduces computational complexity of the current motif finding algorithms and

demonstrate strong running time improvements over existing exact algorithms, especially in important and

difficult cases of large-alphabet sequences.

1

Background

Finding motifs or repeated patterns in data is of wide scientific interest [1–4] with many applications in

genomic and proteomic analysis. The motif search problem abstracts many important problems in analysis

of sequence data, where motifs are, for instance, biologically important patterns. For example, elucidating

motifs in DNA sequences is a critical first step in understanding biological processes as basic as the RNA

transcription. There, the motifs can be used to identify promoters, the regions in DNA that facilitate the

transcription. Finding motifs can be equally crucial for analyzing interactions between viruses and cells or

identification of disease-linked patterns. Discovery of motifs in music sequences, text, or time series data is

a fundamental, general means of summarizing, mining and understanding large volumes of data.

For the purpose of this study, motifs are (short) patterns that occur in an exact or approximate form in all

or most of the strings in a data set. Consider a set of input strings S of size N = |S| constructed from an

alphabet Σ. The solution for the (k,m,Σ, N)-motif finding problem (Figure 1) is the set M of k-mers

(substrings of length k), M⊆ Σk, such that each motif a ∈M, |a| = k, is at minimum Hamming distance

of at most m from all (or almost all) strings s ∈ S.

In this work, we focus on a deterministic, exhaustive approach to motif search. Exhaustive motif finding

approaches are guaranteed to report all instances of motifs in a set of sequences, but are faced by the

exponential complexity of such search. As a consequence, the problem quickly becomes intractable for even

moderately long motifs and small alphabets. We present a new deterministic algorithm for finding common

patterns with the search complexity that scales well with the size of the alphabet. Compared to existing

algorithms in this class (e.g. [5, 6]) that have strong dependency on the alphabet size and work with

small-alphabet input, our algorithms significantly improve search efficiency in the important case of

large-alphabet inputs (e.g. protein alphabet, extended DNA alphabet, etc.) and inputs of large length. As

we show in the experiments, using both synthetic and real data, our algorithms are orders-of-magnitude

faster than existing state-of-the-art deterministic search algorithms, especially on large-alphabet inputs

(e.g., protein sequences). This result extends applicability of the exact motif search algorithms to more

complex problems requiring analysis of biological sequence data modeled as strings over large alphabets.

The problem of motif discovery has been tackled extensively over the past two decades [7]. Within the

class of exhaustive methods, a number of approaches have been proposed, including graph methods

(WINNOWER) [2], explicit trie traversal (MITRA) [5], explicit mapping (Voting algorithms) [8], suffix

trees [6, 9], sorting and enumeration [10], etc. Existing exhaustive algorithms use explicit exploration of the

motif space and require time proportional to the size of the neighborhood of a k-mer, i.e. the number of

2

k-mer sequences at Hamming distance of at most m from it. This size, V (k,m) =
∑m

i=0

(
k
i

)
(|Σ| − 1)i,

depends on the alphabet size, and can lead to high computational complexity and running times, as shown

in Table 1.

Explicit mapping (voting) algorithms proposed in [8] use an indicator array V of the maximum size |Σ|k to

find motifs through voting. Each length-k substring observed in the input has at most one vote for each

input sequence and gives this vote to all of its V (k,m) neighbors. The substrings that occur in every input

string will receive N votes and will be included in the output motif set M. The algorithm takes

O(km+1|Σ|mnN) time and requires at least O(km+1|Σ|mnN) space. The large space requirement of the

algorithm restricts its usage to small values of k and m, as well as to small alphabet size |Σ|.

One of the most efficient exact algorithms for motif search, the mismatch tree (MITRA) algorithm [5], uses

efficient trie traversal to find a set of motifs in the input strings. Under a trie-based computation

framework [5,12], the list of k-long contiguous substrings (k-mers) extracted from given strings is traversed

in a depth-first search manner with branches corresponding to all possible symbol substitutions from

alphabet Σ. Each leaf node at depth k corresponds to a particular k-mer feature (either exact or inexact

instance of the observed exact string features) and will contain a list of matching features from each string.

The leaf nodes corresponding to motifs will contain instances from all (or almost all) strings. The

complexity of the trie-based traversal algorithm for motif finding is O(km+1|Σ|mnN). Note that the

algorithm essentially explores the neighborhood of all O(nN) k-mers in the input.

Another class of efficient algorithms is based on sorting and enumeration [10]. The PMSP algorithm

enumerates all possible neighboring k-mers for the first string s1 and outputs k-mers that occur in every

string with Hamming distance at most m, similar to the Voting algorithm [8]. The PMSprune

algorithm [10] employs a more efficient search strategy to traverse the candidate space and is an

improvement, in the expected case, over the PMSP. We note that explicit enumeration is employed by all

above-mentioned algorithms.

While the exact algorithms focus on retrieving all possible motif patterns, an important issue of estimating

significance of the found motif patterns can be addressed with existing techniques as used in, for instance,

non-exhaustive algorithms based on stochastic optimization (e.g., MEME [13]).

In contrast to existing exact exhaustive algorithms, we approach the problem of motif finding by

performing an efficient search over patterns with wildcards. As a consequence, the proposed method’s

complexity becomes independent of the alphabet size.

3

Methods
Combinatorial algorithm for motif search

In this section, we develop an efficient combinatorial algorithm for motif finding with the search complexity

independent of the size of the alphabet |Σ|. The algorithm begins by finding a set of candidate motifs,

followed by the construction of the intersections of those candidates’ neighborhoods, the sequences that are

at most m symbols apart from each candidate pair. In a crucial departure from other approaches, this set

is efficiently represented using stems, or patterns with wildcards. The number of the stems does not

depend on the alphabet size and is a function of the motif length (k), the number of mismatches (m) and

the Hamming distance between k-mers. Patterns common to all (or almost all) input strings are then

found by pruning the stems that do not satisfy the motif property (i.e., do not occur in all input strings).

The main idea of our approach is to construct a candidate set C which includes all motifs M plus some

non-motifs, i.e. M⊆ C, and then efficiently select true motifs from the candidate set. Given C, the

complexity of motif finding is then proportional to its size: the motifs can be extracted from C by checking

each candidate against the motif property, a task we accomplish using
(
k
m

)
rounds of counting sort in

Algorithm 2. To generate C, we collect the sets of stems which characterize the common neighbors of the

pairs of k-mers (a, b) in the input. We call these sets the stem sets, H(a, b). Finding each H(a, b) is

independent of the alphabet size and is accomplished in Algorithm 3. To further reduce the complexity, we

construct the stem sets only for potential motif instances I, those k-mers that are at Hamming distance of

at most 2m from every input string. We find I using
(

k
2m

)
rounds of counting sort (Algorithm 2). We

outline our motif search algorithm below:

Algorithm 1 Motif search algorithm

1. Use multiple rounds of counting sort to iterate over input strings and construct a set of potential motif
instances I, k-mers that are at Hamming distance of at most 2m from each string (Algorithm 2).
2. Construct candidate set C by building stem sets H(a, b) for k-mer pairs in I (Algorithm 3)
3. Prune all stems from C that do not satisfy motif property using

(
k
m

)
rounds of counting sort (Algo-

rithm 2, Section ‘Pruning using selection’)
4. Output remaining stems as motifs.

This algorithm uses as its main sub-algorithm (in step 2) a procedure that finds the intersection of k-mer

neighborhoods for any pair of the k-mers a, b. This intersection finding algorithm is described in

Section ‘Motif generation’. We describe selection and pruning steps (steps 1 and 3) in Section ‘Selection

algorithm’.

The overall complexity of the algorithm is O(
(

k
2m

)
nN +

(
k
m

)
HI2), where H is the maximum size of H(a, b),

4

and I is the size of I, the number of k-mers used to construct the candidate set C. The important fact that

makes our algorithm efficient in practice is that typically I � min(nN, |Σ|k) and H � V (k,m),

particularly for large alphabets. We demonstrate this in our experimental results and provide an

expected-size analysis in Section ‘Selection algorithm’.

Selection algorithm

A necessary condition for a group of k-mers to have a shared, common neighbor (motif) is that the

Hamming distance between any pair of patterns cannot exceed 2m. We will use this condition to select

k-mers from input that are potential motif instances and place them in set I. A particular k-mer a in the

input is a potential motif instance if it is at the minimum Hamming distance at most 2m from each of the

input strings. All other k-mers that violate the above condition cannot be instances of a motif and can be

discarded. To select the valid k-mers, we use multiple rounds of count sort by removing iteratively 2m out

of k positions and sorting the resulting set of (k − 2m)-mers. A k-mer is deemed a potential motif instance

if it matched at least one k-mer from each of the other strings in at least one of the sorting rounds. The

purpose of sorting is to group same k-mers together. Using a simple linear scan over the sorted list of all

input k-mers, we can find the set of potential motifs and construct I. This algorithm is outlined in

Algorithm 2. As we will see in the experiments (Section ‘Results and Discussion’), the selection step

Algorithm 2 Selection algorithm

Input: set of k-mers with associated sequence index, distance parameter d
Output: set of k-mers at distance d from each input string

1. Pick d positions and remove from the k-mers symbols at the corresponding positions to obtain a set
of (k − d)-mers.
2. Use counting sort to order (lexicographically) the resulting set of (k − d)-mers.
3. Scan the sorted list to create the list of all sequences in which k-mers appear.
4. Output the k-mers that appear in every input string.

significantly reduces the number of k-mer instances considered by the algorithm and improves search

efficiency. The number of selected k-mers, i.e. the size of I, is small, especially for large-alphabet inputs.

This can be seen from the expected case analysis. For this purpose we assume that sequences are generated

from a background process with few motifs implanted in the background-generated sequences. Assuming

an iid background model with equiprobable symbols, the expected number of k-mers in the input of N

strings of length n that match each of the N strings with up to 2m mismatches by chance is

E[IB] = |Σ|k(1− (1− pk,2m)n)N =

5

= |Σ|k
(

1−

(
1−

2m∑
i=0

(
k

i

)(1

|Σ|

)k−i(|Σ| − 1

|Σ|

)i)n)N

,

where pk,2m is the probability that two randomly selected k-mers are at distance of at most 2m. For

instance, for a set of N = 20 protein sequences (sampled from alphabet |Σ| = 20) of length n = 600 the

expected number of potential motifs of length k = 13,m = 4 by chance is about 8, with p13,8 = 2.9 10−4.

Given t implanted motif instances, the average number of k-mers that will be selected from nN input

samples, or the expected size of I, is

E[I] = t + nN(1− (1− pk,2m)t) + E[IB].

Since t and p are typically small, for small pn, E[I]� nN , the number of k-mers in the input. In the

protein example above the expected size of I is about 1 + 3 + 8 = 12 for t = 1, which is orders of

magnitude smaller than nN = 12000, signifying the importance of creating I first. This is empirically

demonstrated in Section ‘Results and Discussion’.

Pruning using selection

The sorting approach of Algorithm 2 is also used to select patterns satisfying the motif property from the

candidates C (Step 3 in main Algorithm 1). The pruning step is based on verifying the motif property (i.e.

whether given patterns match all input sequences with up to m mismatches) and can be accomplished

using
(
k
m

)
rounds of counting sort.

Motif generation

In what follows, we describe an efficient algorithm that finds the set of stems that represent the set of

k-mers shared by a pair of k-mers a and b. This process is used to create set C from potential instances I,

which is subsequently pruned to yield the true motif instances.

The number of k-mers in the common neighborhood of any two particular k-mers a and b assumes a fixed

set values depending on the Hamming distance d(a, b) between k-mers [14], for given values of |Σ|, k, and

m. We want to represent the shared k-mers in this intersection using a set of stems, patterns with

wildcards. However, the number of stems will not depend on the alphabet size |Σ|.

To find all stems shared by k-mers a and b, consider two sets of positions: mismatch region in which a and

b disagree and match region in which a and b agree. We consider two cases depending on the number of

mismatch positions (i.e. Hamming distance between a, b). In the first case, the distance d(a, b) is at most

6

m, the maximum number of mismatches allowed. In the second case, the distance d(a, b) exceeds m. When

d(a, b) ≤ m, wildcard characters can appear both inside and outside of the mismatch region. When

d(a, b) > m, wildcard characters can appear only inside the mismatch regions. Consider for example, the

case of d(a, b) = 0 and m = 1. In this case, the set of stems is the set of patterns with 1 wildcard at each of

the possible k positions (with the remaining positions as in a) plus one stem with 0 wildcards. When

m = 2, and d(a, b) = 1, the set of stems will include patterns with 0 or 1 wildcard in k − d positions and 0

or 1 wildcards in the remaining d = 1 positions. For example, for the pair (tgt, tgc) the corresponding

patterns with wildcards are tg?, t??, ?g?, t?c, and ?gc, where ? denotes a wildcard.

We outline our algorithm for finding set of stems for the k-mer neighborhood intersection in Algorithm 3.

The number of stems generated by the algorithm is

0 ≤ d ≤ m :

d∑
i=0

d−i∑
j1=0

min(m−d+i,m−i−j1)∑
j2=0

(
d

i

)(
d− i

j1

)(
k − d

j2

)

2m ≥ d > m :

m∑
i=d−m

m−i∑
j=0

(
d

i

)(
d− i

j

)
.

The number of stems describing all the explicit k-mers shared between a, b does not depend on the

alphabet size. The complexity of the stemming algorithm is proportional to the number of stems

generated. The maximum number of stems H is O(
∑2m

i=0

(
k
i

)
) for typical values of m < k/2. We use

Algorithm 3 for every pair of k-mers in I (step 2) to construct C as outlined in the main algorithm.

Algorithm 3 Stem generation (independent of the alphabet size |Σ|)
Input: pair of k-mers a, b
Output: set of stems (patterns with wildcards) shared by a and b

if if d(a, b) ≤ m then
Set stem = a
Set i = 0 . . . d positions in the mismatch region of the stem as in b
Place j1 = 0 . . . d− i wildcards inside the mismatch region
Place j2 = 0 . . .m−max(d− i, j1 + i) wildcards outside the mismatch region

end if
if d(a, b) > m then

Set stem = a
Fix i = d−m. . .m positions in the mismatch region of the current stem as in b
Place j = 0 . . .m− i wild-cards in the remaining d− i positions in the mismatch region

end if
Output resulting stems (patterns with wildcards)

7

Algorithm analysis

The complexity of the selection step 1 for constructing I is O(
(

k
2m

)
)nN and does not depend on the

alphabet size |Σ|. Steps 2 and and 3 have the complexity O(
(
k
m

)
HI2) and again do not depend on |Σ|. As

a consequence, the three-step procedure gives us an efficient, alphabet-independent motif search algorithm

that outputs all motifs embedded in the input S. Our experiments will next demonstrate that this allows

efficient exploitation of sparsity of typical solutions—we explore only a small portion of the motif space by

focusing (using Algorithm 2) only on the support samples that are potential instances of the motifs. This

results in significant reductions in running times, especially for large-alphabet inputs, i.e. the cases difficult

for the current exact motif finding algorithms.

Extensions

Our proposed framework can be used to reduce search complexity for other exact search-based motif

finding algorithms. Existing exhaustive algorithms typically (e.g. [5,8,10]) use the entire input (i.e. all the

k-mers in the input) and find motif by essentially exploring neighborhoods of every k-mer in the input.

Their search complexity can be improved by using a reduced set of k-mers instead of all input samples.

This reduced set of k-mers can be obtained using our linear time selection algorithm (Algorithm 2,

Section ‘Selection algorithm’). Using reduced set of k-mers, the actual search complexity after the selection

step becomes sublinear in the input size (since the number of selected k-mers I = |I| is much smaller than

input length O(nN)). For instance, the search complexity of the trie-based algorithms (e.g., [5]) can be

reduced to O(
(
k
m

)
knN + IV (k,m)) instead of O(knNV (k,m)), where V (k,m) is O(km|Σ|m). This will

lead to a more efficient search especially for large-alphabet since a possibly large input (O(knN)) is

replaced with a smaller set I of k-mers that match with up to 2m mismatches every string in the input.

Results and Discussion

We evaluate our algorithms on synthetic benchmark motif finding tasks and real data sets. We first test

our algorithms on the planted motif problem commonly used as a benchmark for evaluation of the motif

finding algorithms [2,5,10]. We then illustrate our method on several DNA and protein sequence data sets.

Planted motif problem

A planted motif problem [2] is the task of finding motifs and their instances in a set of sequences with

variants of the consensus string (motif) implanted with up to m mismatches in every string. This task

8

represents a well-defined subtle motif discovery problem. Instances of this problem with large number of

mutations m are known to be challenging for most of the motif finding algorithms.

We follow the standard setting used in previous studies [2, 5, 10] and generate N = 20 random strings of

length n = 600 using iid, uniformly distributed symbols from an alphabet of size |Σ|. We then embed a

copy (with up to m substitutions at random positions) of a motif at a random location in every string. The

task is then to identify motifs hidden in the input.

In Table 2, we compare the running time of our algorithms with state-of-the-art motif finding algorithms

on several challenging instances of the planted motif problem. We give the running time comparison for

large-alphabet (|Σ| = 20− 100) instances in Table 3. As we can see from the results in Table 2 and Table 3,

our algorithms show significant reduction in running times compared to state-of-the-art methods, especially

for large-|Σ| inputs (Table 3). For large alphabets and large k,m trie traversal takes substantial amount of

time and results in these cases are not reported. In Figure 2(a), we show the running time ratio

(logarithmic scale) between the mismatch trie traversal (MITRA) algorithm and our algorithm as a

function of the alphabet set size. The running time is measured on (13,4) instances of the planted motif

problem. For relatively small alphabet of size 20 our algorithm is about 104 times faster than the mismatch

trie. The difference in running time increases with the size of the alphabet. Large alphabets can, for

instance, arise when encoding the 3D protein structure, a necessity in cases when sequences share little

similarity at primary level.

Figure 2(b) shows efficiency of the selection (step 1 in the algorithm) as a ratio between the input size and

the number of the selected samples (k-mers) |I|. We observe that across different input sizes selection

reduces the number of samples by a factor of about 103. The observed number of selected samples I = |I|

agrees with the theoretical estimates (Section ‘Selection algorithm’) (e.g., for |Σ|=50, n=5000, N=20, we

expect about 52 k-mers to be selected, and the observed size of I is 103 k-mers).

Identifying TF binding sites

We use several data sets with experimentally confirmed TF binding sites: CRP, FNR, and LexA. The CRP

data set contains 18 DNA sequences of length 105 with one or two CRP-binding sites [2,15]. The FNR and

LexA data sets are obtained from RegulonDB [16] database and contain 30 and 91 sequences known to

have sites of length 14 and 20 bases. The task is to identify the sequence motif corresponding to the

binding sites and the positions of sites within sequences.

For CRP, we use relatively long k-mers of length k = 18, with a large number of allowed mismatches

9

(m = 7) from a given set of 18 DNA sequences (|Σ| = 4). For FNR and LexA data sets, we set motif length

to k = 14 and k = 16 bases, with the maximum number of mismatches set to m = 4 and m = 6,

respectively.

Figure 3(a) illustrates motifs found by the algorithm on the CRP data set. In the figure, colors indicate the

importance of positions as measured by the number of hits between the found motif patterns and the

sequences, with blue horizontal lines denoting true (confirmed) locations of the binding sites. The set of

discovered locations agrees with the set of experimentally confirmed primary positions. The discovered

motif patterns correspond to instances of the reference consensus motif TGTGAnnnnnnTCACA [15, 17].

Because of large k and m we observe running time improvements similar to the benchmark planted motif

problems: our algorithm takes about 6 minutes, while the mismatch trie traversal requires about 12 times

as long (4489 seconds). Allowing a large number of mismatches (m = 7) in this case is critical for the motif

prediction performance, because fewer mismatches do not lead to successful identification of the binding

sites.

For FNR and LexA motifs, our algorithm correctly finds consensus patterns TTGATnnnnATCAA and

CTGTnnnnnnnnnCAG, in line with the validated transcription factor binding sites, with the performance

coefficients [2] of 83.69 and 90.38.

Protein motif finding

We also apply our algorithm to finding subtle sequence motifs on several protein sequence datasets, a

challenging task due to the increased alphabet size (|Σ| = 20) coupled with large k and m.

Lipocalin motifs. We first consider motifs in lipocalins which are topologically similar but have very

diverse primary sequences. Using k-mer of length k = 15 with m = 7 mismatches, we identify motifs

containing 15 residues with the instance majority FD[IKLW]S[AKNR]FAGTWYE[ILMV]AK (Figure 3(b)), which

agrees with the known reference motif [18]. Our algorithm takes about 5 minutes to complete this task,

while the mismatch trie algorithm takes more than a day. As in the case of the DNA, a large number of

mismatches is critical for finding motifs, while smaller values of k,m do not result in motif identification.

Zinc metallopeptidase motif. In this experiment, 10 relatively long (average length is 800) human zinc

metallopeptidase sequences used to test motif finding. Identification of subtle motifs in this case is made

even more challenging by the length of the sequences. We use 11 residues long k-mer with m = 5

mismatches and find sequence motifs with the instance majority VAAHELGHS[GL]G in 9 out of 10 sequences

10

that correspond to previously confirmed locations. We note the large number of mismatches (m = 5) was

critical to motif identification.

Super-secondary structure sequence motifs. We consider now two data sets of protein sequences

with interesting 3D sandwich structure studied previously by biologists, for which existence of

corresponding sequence motifs has been postulated [19]. Using Cadherin and Immunoglobin superfamilies

as an example, our algorithm finds sequence patterns that correspond to the supersecondary structure

(SSS) motifs [19,20], i.e. arrangements of the secondary structure units (loops, strands). In particular, in

Cadherin superfamily we find long motifs of length 20 (using m = 4 mismatches) corresponding to the

secondary structure units strand 1 - loop - strand 2 (VIPPISCPENE[KR]GPFPKNLV) and strand 3 - loop -

strand 4 (YSITGQGAD[KNQT]PPVGVFII) (3D SSS motif [20]). Figure 4 shows identified motif positions

within the sequences. Our algorithm finds 36 potential motif instances (out of 330 samples) after the

selection (step 1) and takes about 47 seconds (compared to about 600 seconds using the trie traversal). In

Immunoglobin superfamily (C1 set domains), we find a sequence motif of length 19 SSVTLGCLVKGYFPEPVTV

which corresponds to strand 2-loop-strand 3 secondary structure units (2E SSS motif).

Conclusions

We presented a new deterministic and exhaustive algorithm for finding motifs, the common patterns in

sequences. Our algorithm reduces computational complexity of the current motif finding algorithms and

demonstrate strong running time improvements over existing exact algorithms, especially in large-alphabet

sequences (e.g., proteins), as we showed on several motif discovery problems in both DNA and protein

sequences. The proposed algorithms could be applied to other cases and challenging problems in sequence

analysis and mining potentially characterized by large alphabets, such as text mining.

Competing interests

The authors declare that they have no competing interests.

Authors contributions

All authors contributed equally to this work.

11

References
1. Xing EP, Jordan MI, Karp RM, Russell S: A hierarchical Bayesian Markovian model for motifs in

biopolymer sequences. In In Proc. of Advances in Neural Information Processing Systems, MIT Press
2003:200–3.

2. Pevzner PA, Sze SH: Combinatorial Approaches to Finding Subtle Signals in DNA Sequences. In
Proceedings of the Eighth International Conference on Intelligent Systems for Molecular Biology, AAAI Press
2000:269–278.

3. Fellous JM, Tiesinga PHE, Thomas PJ, Sejnowski TJ: Discovering Spike Patterns in Neuronal
Responses. J. Neurosci. 2004, 24(12):2989–3001,
[http://www.jneurosci.org/cgi/content/abstract/24/12/2989].

4. Jojic N, Jojic V, Frey B, Meek C, Heckerman D: Using “epitomes” to model genetic diversity: Rational
design of HIV vaccine cocktails. In Advances in Neural Information Processing Systems 18. Edited by
Weiss Y, Schölkopf B, Platt J, Cambridge, MA: MIT Press 2006:587–594.

5. Eskin E, Pevzner PA: Finding composite regulatory patterns in DNA sequences. Bioinformatics 2002,
18(suppl1):S354–363, [http://bioinformatics.oxfordjournals.org/cgi/content/abstract/18/suppl 1/S354].
[Http://www.ccls.columbia.edu/compbio/mitra/].

6. Pisanti N, Carvalho AM, Marsan L, Sagot MF: RISOTTO: Fast Extraction of Motifs with Mismatches.
In LATIN 2006:757–768.

7. Tompa M, Li N, Bailey T, Church G, Moor BD: Assessing computational tools for the discovery of
transcription factor binding sites. Nature Biotechnology 2005.

8. Chin FYL, Leung HCM: Voting algorithms for discovering long motifs. In APBC 2005:261–271,
[http://www.comp.nus.edu.sg/∼wongls/psZ/apbc2005/camera-ready/212.pdf].

9. Sagot MF: Spelling Approximate Repeated or Common Motifs Using a Suffix Tree. In LATIN ’98:
Proceedings of the Third Latin American Symposium on Theoretical Informatics, London, UK: Springer-Verlag
1998:374–390.

10. Davila J, Balla S, Rajasekaran S: Fast and Practical Algorithms for Planted (l, d) Motif Search.
IEEE/ACM Transactions on Computational Biology and Bioinformatics 2007, 4(4):544–552.

11. Evans PA, Smith AD: Toward Optimal Motif Enumeration. In WADS 2003:47–58.

12. Leslie C, Kuang R: Fast String Kernels using Inexact Matching for Protein Sequences. J. Mach.
Learn. Res. 2004, 5:1435–1455, [http://jmlr.csail.mit.edu/papers/volume5/leslie04a/leslie04a.pdf].

13. Bailey TL, Elkan C: Unsupervised Learning of Multiple Motifs in Biopolymers Using Expectation
Maximization. Mach. Learn. 1995, 21(1-2):51–80.

14. Kuksa P, Huang PH, Pavlovic V: Scalable Algorithms for String Kernels with Inexact Matching. In
NIPS 2008:881–888.

15. Stormo GD, Hartzell GW: Identifying protein-binding sites from unaligned DNA fragments.
Proceedings of the National Academy of Sciences of the United States of America 1989, 86(4):1183–1187,
[http://www.pnas.org/content/86/4/1183.abstract].

16. RegulonDB. http:// regulondb.ccg.unam.mx/ .

17. Lawrence C, Reilly A: An expectation maximization (EM) algorithm for the identification and
characterization of common sites in unaligned biopolymer sequences. Proteins 1990, 7:41–51.

18. Lawrence C, Altschul S, Boguski M, Liu J, Neuwald A, Wootton J: Detecting subtle sequence signals: a
Gibbs sampling strategy for multiple alignment. Science 1993, 262(5131):208–214,
[http://www.sciencemag.org/cgi/content/abstract/262/5131/208].

19. Kister AE, Fokas AS, Papatheodorou TS, Gelfand IM: Strict rules determine arrangements of strands
in sandwich proteins. Proceedings of the National Academy of Sciences of the United States of America 2006,
103(11):4107–4110, [http://www.pnas.org/content/103/11/4107.abstract].

20. Super-Secondary Structure Database. http:// binfs.umdnj.edu/ sssdb/ .

12

Tables

Table 1: Exact algorithms for motif search
Algorithm Time Complexity Space Complexity

SPELLER [9] O(nN2V (k,m)) O(nN2/w)
MITRA [5] O(knNV (k,m)) O(nNk)
CENSUS [11] O(knNV (k,m)) O(nNk)
Voting [8] O(nNV (k,m)) O(nV (m, k))
RISOTTO [6] O(nN2V (k,m)) O(nN2)
PMS [10] O(n2NV (k,m)) O(n2N)

Table 2: Running time comparison on the challenging instances of the planted motif problem (DNA, |Σ| = 4,
N = 20 sequences of length n = 600). Problem instances are denoted by (k,m, |Σ|), where k is the length of
the motif implanted with m mismatches.

Motif problem instances (k,m, |Σ|)
Algorithm (9,2,4) (11,3,4) (13,4,4) (15,5,4) (17,6,4) (19,7,4)

Stemming 0.95 8.8 31 187 1462 8397
MITRA [5] 0.89 17.9 203 1835 4012 n/a
PMSPrune [10] 0.99 10.4 103 858 7743 81010
RISOTTO [6] 1.64 24.6 291 2974 29792 n/a

Table 3: Running time, in seconds, on large-|Σ| inputs. (k,m) instances denote implanted motifs of length
k with up to m substitutions.

|Σ| (9,2) (11,3) (13,4) (15,5)
MITRA Stemming MITRA Stemming MITRA Stemming MITRA Stemming

20 8.39 0.637 1032.17 1.07 28905 5.247 n/a 12.31
50 89.82 0.633 12295.73 0.963 685015 2.244 n/a 11.92
100 265.94 0.645 n/a 0.967 > 1 month 2.227 n/a 11.86

13

List of Figures
1 The motif search problem.
2 (a) Running time ratio (TMITRA/Tstem) as a function of the alphabet size (planted motif problem,

k = 13, m = 4). (b) Ratio between input size (nN) and the number of selected samples (I = |I|) as a
function of the input length and alphabet size (planted motif problem, k = 13, m = 4). Note logarithmic
scale.

3 (a) Recognition of CRP binding sites (k = 18,m = 7, |Σ| = 4). (b) Lipocalin motifs (k = 15,m =
7, |Σ| = 20).

4 The sequence patterns for supersecondary structure motifs (Cadherin superfamily, k = 20,m =
4, |Σ| = 20)

14

Figures

motif
(unknown)

motif instances
(inexact copies -
 unknown)

sequences
(known)

Figure 1: The motif search problem.

0 10 20 30 40 50 60 70 80 90 100
100

101

102

103

104

105

106

107

alphabet size,|!|

ru
nn

in
g

tim
e

ra
tio

 T
M

IT
RA

/T
st

em

(a)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
102

103

104

sequence length, n

ra
tio

 (i
np

ut
 s

ize
) /

 (n
um

be
r o

f s
el

ec
te

d
in

st
an

ce
s

I)

|!|=20
|!|=50

(b)

Figure 2: (a) Running time ratio (TMITRA/Tstem) as a function of the alphabet size (planted motif problem,
k = 13, m = 4). (b) Ratio between input size (nN) and the number of selected samples (I = |I|) as a
function of the input length and alphabet size (planted motif problem, k = 13, m = 4). Note logarithmic
scale.

15

(a) CPR binding sites (b) Lipocalin motifs

Figure 3: (a) Recognition of CRP binding sites (k = 18,m = 7, |Σ| = 4). (b) Lipocalin motifs (k = 15,m =
7, |Σ| = 20).

se
qu

en
ce

 n
um

be
r

position

V

I

P

V

P

I

V

I

P

I

S

P

P

C

V

I

P

P

I

K

I

E

P

V

N

N

P

S

L

E

I

E

P

K

S

N

E

G

C

E

N

E

P

R

S

F

E

G

R

P

N

P

G

K

E

F

P

N

K

P

F

L

G

K

P

V

P

R

Q

F

L

E

P

V

L

K

V

N

L

V

Y

S

I

Y

T

S

Y

G

I

S

Q

T

V

G

Y

G

T

A

S

Q

G

D

I

G

P

K

T

A

G

P

G

D

A

P

Q

N

D

V

G

P

Q

G

A

P

P

V

D

Q

P

F

T

G

T

I

P

V

G

I

P

F

I

V

R

F

G

I

I

V

I

F

I

I

10 20 30 40 50 60 70

0.5

1

1.5

2

2.5

3

3.5

4

4.5 0

20

40

60

80

100

120

Figure 4: The sequence patterns for supersecondary structure motifs (Cadherin superfamily, k = 20,m =
4, |Σ| = 20)

16

