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Abstract

Background: Recent studies in computational primary protein sequence analysis have leveraged the

power of unlabeled data. For example, predictive models based on string kernels trained on sequences

known to belong to particular folds or superfamilies, the so-called labeled data set, can attain significantly

improved accuracy if this data is supplemented with protein sequences that lack any class tags—the

unlabeled data. In this study, we present a principled and biologically motivated computational framework

that more effectively exploits the unlabeled data by only using the sequence regions that are more likely to

be biologically relevant for better prediction accuracy. As overly-represented sequences in large uncurated

databases may bias the estimation of computational models that rely on unlabeled data, we also propose

a method to remove this bias and improve performance of the resulting classifiers.

Results: Combined with state-of-the-art string kernels, our proposed computational framework achieves

very accurate semi-supervised protein remote fold and homology detection on three large unlabeled

databases. It outperforms current state-of-the-art methods and exhibits significant reduction in running

time.

Conclusions: The unlabeled sequences used under the semi-supervised setting resemble the unpolished

gemstones; when used as-is, they may carry unnecessary features and hence compromise the

classification accuracy but once cut and polished, they improve the accuracy of the classifiers

considerably.
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Introduction

Classification of proteins into structural or functional classes is one of the fundamental problems in computational

biology. With the advent of large-scale sequencing techniques, experimental elucidation of an unknown function of

the protein sequence becomes an expensive and tedious task. Currently, there are more than 61 million DNA

sequences in GenBank [1], and approximately 349,480 annotated and 5.3 million unannotated sequences in

UNIPROT [2], making development of computational aids for sequence annotation a critical and timely task.

In this work we address the problem of remote fold and homology prediction using only the primary sequence

information. While additional sources of information, such as the secondary or tertiary structure, may lessen the

burden of establishing functional or structural similarity, they may often be unavailable or difficult to acquire for new

putative proteins. Even when present, such information is only available on a very small group of protein sequences

and absent on larger uncurated sequence databases.

We focus on performing remote fold and homology detection with kernel-based methods [3] that use sequence

information only under the discriminative learning setting. The discriminative learning setting captures the

differences among classes (e.g. folds and superfamilies). Previous studies [4, 5] show that the discriminative models

have better distinction power over the generative models [6], which focus on capturing shared characteristics within

classes.

Remote fold and homology detection problems are typically characterized by few positive training sequences (e.g.

sequences from the same superfamily) accompanied by a large number of negative training examples. Lack of

positive training examples may lead to sub-optimal classifier performance, therefore making training set expansion

necessary. However, enlarging the training set by experimentally labeling the sequences is costly, leading to the need

to leverage available unlabeled data to refine the decision boundary. The profile kernel [7] and the mismatch

neighborhood kernel [8] both use unlabeled data sets and show significant improvements over the sequence classifiers

trained under the supervised (labeled data only) setting. In this study, we propose a systematic and biologically

motivated approach that more efficiently uses the unlabeled data and further develops the crucial aspects of

neighborhood and profile kernel methods. The proposed framework, the region-based neighborhood method

(Section ‘Extracting relevant information from the unlabeled sequence database’), utilizes the unlabeled sequences to
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construct an accurate classifier by focusing on the significantly similar sequence regions that are more likely to be

biologically relevant. As overly-represented sequences may lead to performance degradation by biasing kernel

estimations based on unlabeled data, we propose an effective method (Section ‘Clustered Neighborhood Kernels’)

that improves performance of the resulting classifiers under the semi-supervised learning setting. Our experimental

results (Section ‘Experiments’) show that the framework we propose yields significantly better performance

compared to the state-of-the methods and also demonstrates significantly reduced running times on large unlabeled

datasets.

Background

In this section, we briefly review previously published state-of-the-art methods for protein homology detection and

fold recognition. We denote the alphabet set of the 20 amino acids as Σ in the whole study.

The spectrum kernel family

The spectrum kernel methods [5, 9] rely on fixed-length representations or features Φ(X) of arbitrary long sequences

X modeled as the spectra (|Σ|k-dimensional histogram of counts) of short substrings (k-mers) contained in X . These

features are subsequently used to define a measure of similarity, or kernel, K(X, Y ) = Φ(X)T Φ(Y ) between

sequences X, Y .

Given a sequence X , the mismatch(k,m) kernel [5] induces the following |Σ|k-dimensional representation for X:

Φk,m(X) =

(

∑

α∈X

Im(α, γ)

)

γ∈Σk

, (1)

where Im(α, γ) = 1 if α ∈ N(γ, m) and N(γ, m) denotes the set of contiguous substrings of length k that differ

from γ in at most m positions.

Under the mismatch(k,m) representation, the notion of similarity is established based on inexact matching of the

observed sequences. In contrast, the profile [7, 10] kernel, proposed by Kuang et al. , establishes the notion of

similarity based on a probabilistic model (profile). Given a sequence X and its corresponding profile [11], the

|Σ|k-dimensional profile(k,σ) representation is:

Φprofile(k,σ)(X) =





∑

i=1···(TPX
−k+1)

I(PX(i, γ) < σ)





γ∈Σk

, (2)

where σ is a pre-defined threshold, TPX
denotes the length of the profile and PX(i, γ) the cost of locally aligning the

k-mer γ to the k-length segment starting at the ith position of PX .
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Explicit inclusion of the amino acid substitution process and leveraging the power of the unlabeled data allow both

the mismatch and profile kernels to demonstrate state-of-the-art performance under both supervised and

semi-supervised settings [8, 10, 12]. Under the semi-supervised setting, the profile kernel uses the unlabeled

sequences to construct a profile for inexact string matching whereas mismatch kernels take advantage of the sequence

neighborhood smoothing technique presented in Section ‘The sequence neighborhood kernel’.

The Sparse Spatial Sample Features

Similar to the mismatch kernel, the sparse spatial sample kernels (SSSK) [13] also directly extract string features

from the observed sequences. The induced features explicitly model mutation, insertion and deletion by sampling the

sequences at different resolutions. The three parameters for the kernels are the sample size k, the number of samples

t, and the maximum allowed distances between two neighboring samples d. The kernel has the following form:

K(t,k,d)(X, Y ) =

∑

(a1,d1,...,dt−1,at)

ai∈Σk,0≤di<d

C(a1, d1, · · · , at−1, dt−1, at|X)·
C(a1, d1, · · · , at−1, dt−1, at|Y )

, (3)

where C(a1, d1, · · · , at−1, dt−1, at|X) denotes the number of times we observe substring a1
d1↔ a2,

d2↔, · · · , dt−1←→ at

(a1 separated by d1 characters from a2, a2 separated by d2 characters from a3, etc.) in the sequence X . The crucial

difference between the spatial and spectrum features is that the spectrum features consist of only contiguous k-mers,

whereas the spatial sample features consist of a number of (t) shorter k-mers separated by some distance, (controlled

by d), to directly model the complex biological processes. Such multi-resolutional sampling technique also captures

short-term dependencies among the amino acid residues, or shorter k-mers, in the observed sequences. In Figure 1,

we illustrate the differences between the spectrum and the spatial features. In the upper panel, we show a spectrum

feature with k = 6 and in the lower panel, we show a spatial sample feature with k = 2, t = 3. Figure 2 further

compares spectrum-like features with spatial sample features and shows mismatch(5,1) and double(1,5) feature sets

for two strings, S and S′, that are similar but only moderately conserved (two mutations apart). More features are

shared between S and S′ under the spatial sample representation compared to the mismatch spectrum allowing to

establish sequence similarity. Similar to the mismatch kernel, for the SSSK, semi-supervised learning can be

accomplished using the sequence neighborhood approach. Kuksa et al. show in [13] that the SSSK outperform the

state-of-the-art methods under the supervised setting and the semi-supervised setting on a small unlabeled data set.
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The sequence neighborhood kernel

The sequence neighborhood kernels take advantage of the unlabeled data using the process of neighborhood induced

regularization. Let Φorig(X) be the original representation of sequence X . Also, let N(X) denote the sequence

neighborhood of X and X ∈ N(X) (i.e. N(X) is the set of sequences neighboring (similar to) X; we will discuss

how to construct N(X) in Sections ‘Extracting relevant information from the unlabeled sequence database’

and ‘Experiments’). Weston et al. propose in [8] to re-represent the sequence X using its neighborhood set N(X) as

Φnew(X) =
1

|N(X)|
∑

X′∈N(X)

Φorig(X ′). (4)

Under the new representation, the kernel value between the two sequences X and Y becomes

Knbhd(X, Y ) =
∑

X′∈N(X),Y ′∈N(Y )

K(X ′, Y ′)

|N(X)||N(Y )| . (5)

Weston et al. in [8] and Kuksa et al. in [13] show that the discriminative power of the classifiers improve significantly

once information regarding the neighborhood of each sequence is available.

Proposed methods

In Section ‘Extracting relevant information from the unlabeled sequence database’, we first propose a new framework

for extracting only relevant information from unlabeled data to improve efficiency and predictive accuracy under a

semi-supervised learning setting. Next, we extend the proposed framework in Section ‘Clustered Neighborhood

Kernels’ using clustering to improve computational complexity and reduce data redundancy, which, as we will show

experimentally, further improves speed and accuracy of the classifiers.

Extracting relevant information from the unlabeled sequence database

To establish the similarities among sequences under the semi-supervised setting, Weston et al. in [8] propose to

construct the sequence neighborhood for each training and testing sequence X using the unlabeled sequences and

re-represent X as the averaged representation of all neighboring sequences (Equation 4). The sequence

neighborhood N(X) of a sequence X is defined as N(X) = {X ′ : s(X, X ′) ≤ δ}, where δ is a pre-defined

threshold and s(X, X ′) is a scoring function, for example, the e-value. Under the semi-supervised learning setting,

our goal is to recruit neighbors of training and testing sequences to construct the sequence neighborhood and use

these intermediate neighbors to identify functionally or structurally related proteins that bear little to no similarity on

the primary sequence level. As a result, the quality of the intermediate neighboring sequences is crucial for remote

fold or homology detection. However, in many sequence databases, multi-domain protein sequences are abundant
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and such sequences might be similar to several unrelated single-domain sequences, as noted in [8]. Therefore, direct

use of these long sequences may falsely establish similarities among unrelated sequences since these unlabeled

sequences carry excessive and unnecessary features. In contrast, very short sequences often induce very sparse

representation and therefore have missing features. Direct use of sequences that are too long or too short may bias the

averaged neighborhood representation (4) and compromise the performance of the classifiers. Therefore, a possible

remedy is to discard neighboring sequences whose lengths are substantially different from the query (training or test)

sequence. For example, Weston et al. in [8] proposed to only capture neighboring sequences with maximal length of

250 (for convergence purposes). However, such practice may not offer a direct and meaningful biological

interpretation. Moreover, removing neighboring sequences purely based on their length may discard sequences

carrying crucial information and degrade classification performance, as we will show in Section ‘Experiments’.

To more effectively use unlabeled neighboring sequences, we propose to extract the significantly similar sequence

regions from the unlabeled neighboring sequences since these regions are more likely to be biologically relevant.

Such significant regions are commonly reported in most search methods, such as BLAST [14], PSI-BLAST [15] and

HMM-based methods. We illustrate the proposed procedure using PSI-BLAST as an example in Figure 3. In the

figure, given the query sequence, PSI-BLAST reports sequences (hits) containing substrings that exhibit statistically

significant similarity with the query sequence. For each reported significant hit, we extract the most significant region

and recruit the extracted sub-sequence as a neighbor of the query sequence. In short, the region-based neighborhood

R(X) contains the extracted significant sequence regions, not the whole neighboring sequences of the query

sequence X , i.e. R(X) = {x′ : s(X, X ′) ≤ δ}, where x′ ⊑ X ′ is the most statistically significant matching region

of an unlabeled neighbor X ′. As we will show in Section ‘Experiments’, the proposed region-based neighborhood

method will allow us to more efficiently leverage the unlabeled data and significantly improve the classifier

performance.

We summarize all competing methods for leveraging unlabeled data during training and testing under the

semi-supervised learning setting in below and experimentally compare the methods in Section ‘Experiments’:

• full sequence: all neighboring sequences are recruited and the sequence neighborhood N(X) is established on

the whole-sequence level. This is to show how much excessive or missing features in neighboring sequences

that are too long or too short compromise the performance of the classifiers.

• extracting the most significant region: for each recruited neighboring sequence, we extract only the most

significantly similar sequence region and establish the region-based neighborhood R(X) on a sub-sequence

level; such sub-sequence is more likely to be biologically relevant to the query sequence.
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• filtering out long and short sequences: for each query sequence X , we construct the full sequence

neighborhood N(X) first (as in the full sequence method). Then we remove all neighboring sequences

X ′ ∈ N(X) if TX′ > 2TX or TX′ < TX

2 , where TX is the length of sequence X . In essence, this method may

alleviate the effect of the excessive and missing features in the full sequence method by discarding the

sequences whose length fall on the tails of the length histogram.

• maximal length of 250: proposed by Weston et al. in [8]; for each sequence, we first construct full sequence

neighborhood N(X), then we remove all neighboring sequences X ′ ∈ N(X) if TX′ > 250.

Clustered Neighborhood Kernels

The smoothing operation in Equation 4 is susceptible to overly represented neighbors in the unlabeled data set since

if we append many replicated copies of a neighbor sequence to N(X), the neighbor set of X , the computed average

will be biased towards such sequence. Large uncurated sequence databases usually contain abundant duplicated

sequences. For example, some sequences in Swiss-Prot have the so-called secondary accession numbers. Such

sequences can be easily identified and removed. However, two other types of duplication that are harder to identify

are the sequences that are nearly identical and the sequences that contain substrings sharing high sequence similarity

and are significant hits to the query sequence. Such sequences also may bias the estimate of the averaged

representation and compromise the performance of the classifiers. Consequently, pre-processing the data prior to

kernel computations is necessary to remove such bias and improve performance.

In this study we propose the clustered neighborhood kernels. Clustered neighborhood kernels further simplify the

region neighborhood R(X) to obtain a reduced region neighborhood R∗(X) ⊆ R(X) without duplicate or

near-duplicate regions (i.e. with no pair of sequence regions in R∗(X) sharing more than a pre-defined sequence

identity level). The simplification is accomplished by clustering the set R(X). We then define the clustered

region-based neighborhood kernel between two sequences X and Y as:

K ′(X, Y ) =
∑

x∈R∗(X)

∑

y∈R∗(Y )

K(x, y)

|R∗(X)||R∗(Y )| . (6)

Clustering typically incurs quadratic complexity in the number of sequences [14, 16]. Moreover, pre-clustering the

unlabeled sequence database may result in loss of neighboring sequences, which in turn may cause degradation of

classifier performance, as we will discuss in Section ‘Discussion on clustered neighborhood’. As a result, though

clustering the union of all neighbor sets or the unlabeled dataset may appear to be more desirable, to ensure that we

recruit all neighbors and to alleviate computational burden, we propose to post-cluster each reported neighbor set one

at a time. For example, the union of all neighbor sets induced by the NR unlabeled database for the remote homology
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task contains 129, 646 sequences, while the average size of the neighbor sets is only 115. Clustering each reported

neighbor set individually leads to significant savings in running time, especially when coupled with kernel methods

that are computationally expensive, as we will illustrate experimentally in Section ‘Discussion on clustered

neighborhood’.

Experiments

We perform the remote fold and remote homology detection experiments under the SCOP [17] (Structural

Classification of Proteins) classification. Proteins in the SCOP dataset are placed in a tree hierarchy: class, fold,

superfamily and family, from root to leaf as illustrated in Figure 4. Proteins in the same superfamily are very likely to

be evolutionarily related; on the other hand, proteins in the same fold share structural similarity but are not

necessarily homologous. For remote homology detection under the semi-supervised setting we use the standard

SCOP 1.59 data set, published in [8]. The data set contains 54 binary classification problems, each simulating the

remote homology detection problem by training on a subset of families under the target superfamily and testing the

superfamily classifier on the remaining (held out) families. For the remote fold prediction task we use the standard

SCOP 1.65 data set from [12]. The data set contains 26 folds (26-way multi-class classification problem), 303

superfamilies and 652 families for training with 46 superfamilies completely held out for testing to simulate the

remote fold recognition setting.

To perform experiments under the semi-supervised setting, we use three unlabeled sequence databases, some

containing abundant multi-domain protein sequences and duplicated or overly represented (sub-)sequences. The

three databases are PDB [18] (as of Dec. 2007, 17,232 sequences), Swiss-Prot [19] (we use the same version as the

one used in [8] for comparative analysis of performance; 101,602 sequences), and the non-redundant (NR) sequence

database (534,936 sequences). To adhere to the true semi-supervised setting, we remove all sequences in the

unlabeled data sets identical to any test sequences.

To construct the sequence neighborhood of X , we perform two PSI-BLAST iterations on the unlabeled database with

X as the query sequence and recruit all sequences with e-values ≤ .05. These sequences now form the neighborhood

N(X) at the full sequence level. Next for each neighboring sequence, we extract the most significant region (lowest

e-value) to form the sub-sequence (region) neighborhood R(X). Finally, we cluster R(X) at 70% sequence identity

level using an existing package, cd-hit [16], and form the clustered region neighborhood R∗(X) using the

representatives. The region-based neighborhood kernel then can be obtained using the smoothed representations

(Equation 4) by substituting N(X) with R(X) or R∗(X). We evaluate our methods using the spatial sample and the

mismatch representations (Sections ‘The spectrum kernel family’ and ‘The Sparse Spatial Sample Features’).
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In all experiments, we normalize the kernel values K(X, Y ) using K ′(X, Y ) = K(X,Y )√
K(X,X)K(Y,Y )

to remove the

dependency between the kernel value and the sequence length. We use sequence neighborhood smoothing in

Equation 4, as in [8], under both the spatial sample and mismatch representations. To perform our experiments, we

use an existing SVM implementation from a standard machine learning package SPIDER [20] with default

parameters.

For the sparse spatial sample kernel, we use triple(1,3) (k = 1, t = 3 and d = 3), i.e. features are triples of

monomers, and for the mismatch kernel, we use mismatch(5,1) (k = 5, and m = 1) and mismatch(5,2) kernels. To

facilitate large-scale experiments with relaxed mismatch constraints and large unlabeled datasets, we use the

algorithms proposed by Kuksa et al. in [21].

For the remote homology (superfamily) detection task, we evaluate all methods using the Receiver Operating

Characteristic (ROC) and ROC50 [22] scores. The ROC50 score is the (normalized) area under the ROC curve

computed for up to 50 false positives. With a small number of positive test sequences and a large number of negative

test sequences, the ROC50 score is typically more indicative of the prediction accuracy of a homology detection

method. Higher ROC/ROC50 scores suggest better discriminative power of the classifier.

For the remote fold recognition task, we adopt the standard proposed by Melvin et al. in [12] and use 0-1 and

balanced error rates as well as the F1 scores (F1 = 2pr/(p + r), where p is the precision and r is the recall) to

evaluate the performance of the methods (lower error rates and/or higher F1 scores suggest better discriminative

power of the multi-class classifier). Unlike the remote homology (superfamily) detection task, which was formulated

as a binary classification problem, the remote fold detection task was formulated as a multi-class classification

problem; currently, there is no clear way of evaluating such classification problem using the ROC scores.

Data and source code are available at the supplementary website [23].

Remote homology (superfamily) detection experiments

In this section, we compare the results obtained using region-based and full sequence methods on the task of

superfamily (remote homology) detection. We first present the results obtained using the spatial SSSK kernels

(Section ‘The Sparse Spatial Sample Features’).

Experimental results with the triple(1,3) kernel

In the upper panel of Figure 5, we show the ROC50 plots of all four competing methods, with post-clustering, using

the triple(1,3) kernel on different unlabeled sequence databases (PDB, Swiss-Prot, and NR). In each figure, the

horizontal axis corresponds to a ROC50 score, and the vertical axis denotes the number of experiments, out of 54,
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with equal or higher ROC50 score (an ideal method will result in a horizontal line with y-coordinate corresponding to

the total number of experiments). In all cases, we observe the ROC50 curves of the region-based method (lines with

’+’ signs) show strong dominance over those of other methods that use full sequences. Furthermore, as we observe in

Figures 5(a) and 5(b), discarding sequences based on the sequence length (the two colored dashed and dashed-dotted

lines) degrades the performance of the classifiers compared to the baseline (full sequence) method (solid lines). This

suggests that longer unlabeled sequences carrying crucial information for inferring the class labels of the test

sequences are discarded.

We summarize performance measures (average ROC and ROC50 scores) for all competing methods in Table 1 (with

and without post-clustering). For each method, we also report the p-value of the Wilcoxon Signed-Rank test on the

ROC50 scores against the full sequence (baseline) method. The region-based method strongly outperforms other

competing methods that use full sequences and consistently shows statistically significant improvements over the

baseline full-sequence method, while the other two methods suggest no strong evidence of improvement. We also

note that clustering significantly improves the performance of the full sequence method (p-value < .05 in all

unlabeled datasets) and offers noticeable improvements for the region-based method on larger datasets (e.g. NR).

Clustering also results in substantial reduction in running times, as we will show in Section ‘Discussion on clustered

neighborhood’.

Experimental results on remote homology detection with the mismatch(5,1) kernel

In the lower panel of Figure 5, we show the ROC plots of all four competing methods, with post-clustering, using the

mismatch(5,1) kernel on different unlabeled sequence databases (PDB, Swiss-Prot, NR). We observe that the ROC50

curves of the region-based method show strong dominance over those of other competing methods that use full

sequences. In Figures 5(e) and 5(f) we again observe the effect of filtering out unlabeled sequences based on the

sequence length: longer unlabeled sequences carrying crucial information for inferring the label of the test sequences

are discarded and therefore the performance of the classifiers is compromised. Table 2 compares performance of

region-based and full-sequence methods using mismatch(5,1) kernel (with and without post-clustering) on the remote

homology task. The region-based method again shows statistically significant improvement compared to the full

sequence and other methods. Interestingly, using Swiss-Prot as an unlabeled database, we observe that filtering out

the sequences with length > 250 degrades the performance significantly. Similar to the triple kernel, we also observe

significant improvements for the full sequence method with clustered neighborhood on larger datasets.
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Multi-class remote fold recognition experiments

In the remote fold recognition setting, the classifiers are trained on a number of superfamilies under the fold of

interest and tested on unseen superfamilies. The task is also made harder by switching from the binary setting in the

remote homology task in Section ‘Remote homology (superfamily) detection experiments’ to the multi-class setting.

We adopt the simple one-vs-all scheme used by Kuksa et al. in [24]: let Y be the output space, we estimate |Y |

binary classifiers and given a sequence x we predict the class ŷ using equation 7, where fy denotes the classifier built

for class y ∈ Y .

ŷ = argmax
y∈Y

fy(x), (7)

In Table 3 we compare the classification performance (0-1 and balanced error rates as well as F1 scores) on the

multi-class remote fold recognition task of the region-based and the full-sequence methods using the triple(1,3)

kernel with post-clustering. Under the top-n error cost function, a classification is considered correct if fy(x) has

rank, obtained by sorting all prediction confidences in non-increasing order, at most n and y is the true class of x. On

the other hand, under the balanced error cost function, the penalty of mis-classifying one sequence is inversely

proportional to the number of test sequences in the target class (i.e. mis-classifying a sequence from a class with a

small number of examples results in a higher penalty compared to that of mis-classifying a sequence from a large,

well represented class). From the table we observe that in all instances, the region-based method demonstrates

significant improvement over the baseline (full sequence) method (e.g. top-1 error reduces from 50.8% to 36.8% by

using regions) whereas filtering sequences based on the length show either no clear improvement or noticeable

degradation in performance.

Table 4 summarizes the performance measures for all competing methods on multi-class remote fold prediction task

using the mismatch(5,1) kernel with post-clustering. We again observe that region-based methods clearly outperform

all other competing methods (e.g. top-1 error reduces from 50.5% to 44.8% using regions).

In Table 5, we compare the performance of all competing methods with and without clustering, using the

mismatch(5,2) similarity measure for the remote fold recognition task (we use relaxed matching [21] (m=2) since

mismatch(5,1) measure is too stringent to evaluate similarity in the case of very low sequence identities at the fold

level). As we can see from Table 5, relaxed matching for the mismatch kernel (m = 2) further improves accuracy

(compare with Table 4) with region-based method (e.g. region-based method results in a top-1 error of 40.88%

compared to 50.16% of the baseline). Sequence neighborhood clustering also substantially improves the

classification accuracy in most of the cases.
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Comparison with other state-of-the-art methods

In Table 6, we compare remote homology detection performance our proposed methods on two string kernels (triple

and mismatch) against the profile kernel, the state-of-the-art method for remote homology (superfamily) detection.

We use the code provided in [10] to construct the profile kernels. We also control the experiments by strictly adhering

to the semi-supervised setting to avoid giving advantage to any method. For each unlabeled data set, we highlight the

methods with the best ROC and ROC50 scores. In almost all cases, the region-based method with clustered

neighborhood demonstrates the best performance. Moreover, the ROC50 scores of the triple and mismatch kernels

strongly outperform those of the profile kernel. We note that previous studies [7, 8] suggest that the profile kernel

outperforms the mismatch neighborhood kernel. However, we want to point out that the profile kernel constructs

profiles using smaller matching segments, not the whole sequence. Therefore, a direct comparison between profile

and the original neighborhood mismatch kernels [8] may give the profile kernel a slight advantage, as we have clearly

shown by the full sequence (whole sequence) method in Section ‘Experimental results on remote homology detection

with the mismatch(5,1) kernel’. Previous results for the mismatch neighborhood kernels, though promising, show a

substantial performance gap when compared to those of the profile kernels. Moreover, as shown in [7], to improve

the accuracy of the profile kernels, one needs to increase the computationally demanding PSI-BLAST iterations.

Using the region-based neighborhood with only 2 PSI-BLAST iterations both mismatch and spatial neighborhood

kernels achieve results better than profile kernels with 5 PSI-BLAST iterations [7]. In this study, we bridge the

performance gap between the profile and mismatch neighborhood kernels and show that by establishing the

sub-sequence (region) neighborhood, the mismatch neighborhood kernel outperforms the profile kernel.

In Table 7, we compare our proposed methods for multi-class remote fold recognition using two string kernels (triple

and mismatch) against the state-of-the-art profile kernel method. All semi-supervised learning methods are

accomplished with 2 PSI-BLAST iterations using non-redundant unlabeled data set (NR); all sequences that are

identical to any test sequences are removed. We again observe that region-based method, especially when coupled

with the spatial (triple) kernel, significantly outperform the profile kernel.

In Figures 6 and 7, we compare ranking quality on the multi-class remote fold recognition task for region-based and

full sequence-based methods using the 0-1 top-n error and the top-n balanced error curves. The region-based

methods clearly show strong dominance in ranking quality over the baseline (full sequence) methods and the profile

kernel for small values of n.
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Discussion

We further discuss the benefits of extracting only statistically significant regions from the neighboring sequences in

Section ‘Motivation for region extraction’ and elaborate on the role of post-clustering in Section ‘Discussion on

clustered neighborhood’

Motivation for region extraction

Figure 8 illustrates the benefit of extracting only statistically significant regions from the unlabeled sequences. In the

figure, colors indicate membership: yellow (shaded) represents the positive class and green (pattern) the negative

class. The arcs indicate (possibly weak) similarity induced by shared features (black boxes) and absence of arcs

indicates no similarity. Sequences sharing statistically significant similarity are more likely to be

evolutionarily/structurally related and therefore to belong to the same superfamily/fold. The goal is to infer

membership of the test (unshaded) sequences via the unlabeled sequence (middle). As can be seen from the figure,

the positive training and test sequences share no features and therefore no similarity; however, the unlabeled

sequence shares some features with both sequences in the reported region, which is very likely to be biologically or

structurally related to both positive sequences. Via this unlabeled sequence, the similarity between the two positive

sequences is established. In contrast, if the whole unlabeled sequence is recruited as a neighbor, the similarity

between the positive training and negative test sequences will be falsely established by the irrelevant regions,

resulting in poor classifier performance.

One example in the SCOP 1.59 dataset that demonstrates this behavior is the target family EGF-type module under

the EGF/Laminin superfamily, Knottins fold and small proteins class. In the experiment, we observe an unlabeled

sequence in Swiss-Prot (ID Q62059) sharing statistically significant similarity to the positive training, positive test,

and negative test sequences. The class and fold pairs observed in similar negative test sequences are (all beta,

Immunoglobulin-like beta sandwich), (alpha+beta, C-type lectin-like), and (small proteins, complement control

module/ SCR domain). Swiss-Prot annotation states that this protein sequences contain the C-type lectin,

Immunoglobulin-like V-type, link and sushi (CCP/SCR) domains. Without region extraction, the ROC50 scores are

0.3250 and 0.3292 under the triple and mismatch kernels. By establishing the neighborhood based on the extracted

regions, the ROC50 scores improve to 0.9464 and 0.9664.

Discussion on clustered neighborhood

In Section ‘Clustered Neighborhood Kernels’, we propose to post-cluster each sequences neighbor set one at a time,

as opposed to pre-clustering the union of all neighbor sets or the whole unlabeled sequence database. In this section,
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we further illustrate the benefits of post-clustering: improvement in performance of classifiers as well as reduced

storage and running time for classification.

We first show the difference between pre- and post-clustering using the PDB database under the remote homology

detection task. For pre-clustering, we cluster the whole PDB database at 70% sequence identity level to obtain

PDB70. Then we perform 2 PSI-BLAST iterations on PDB70 to obtain the sequence neighborhood and extract the

significant regions. In contrast, for post-clustering, we perform 2 PSI-BLAST iterations on the whole PDB database,

extract the significant regions for each neighboring sequence and then cluster the extracted regions at 70% sequence

identity level. For the triple(1,3) neighborhood kernel, the ROC-50 scores for pre-/post- clustering are .8122 and

.8246 with a border-line significant p-value of .1248. For the mismatch(5,1) kernel, the ROC-50 scores for pre-/post-

clustering are .7836 and .8038 with a significant p-value of .0853. Under the pre-clustering framework, the

mean/median/max number of neighbors for each labeled sequence is 11/4/119 whereas under the post-clustering

framework, the number of neighbors is 11/5/130; performing post-clustering in general slightly increases the number

of neighbors for each labeled sequence. In fact, under the post-clustering framework, we scan the whole unlabeled

sequence database to find the neighbors of a query sequence and recruit all neighboring sequences. Furthermore,

during the later clustering stage, a neighboring sequence will be removed only if there is another similar sequence in

the neighborhood, whereas under the pre-clustering framework, when a potential neighbor is removed and a

representative chosen for the corresponding cluster, the representative might be too dissimilar to the query sequence

and might not be recruited as a neighbor, which might result in worse performance as shown on PDB database.

In addition to improving classification accuracy, performing clustering on the neighbor sets may also lead to

substantial reduction in storage space and computational time. Our experimental data shown in Table 8 suggests that

performing clustering reduces the neighborhood size by two fold on average, which in turn implies less

computational resources for storage: under the discriminative kernel learning setting, we need to save the support

vectors along with their corresponding neighbor sets. In Table 9, we show the experimental running time, in

seconds, for computing the 3,860x3,860 mismatch and triple kernel matrices for the fold recognition task. By

extracting the significant regions of the neighboring sequences, the experimental running time has been reduced

substantially compared to full sequence-based methods. Performing clustering on a per sequence neighborhood basis

further reduces running time. The neighborhood size as well as the number of features also reduces substantially by

using regions and post-clustering, as illustrated in Tables 9 and 8.
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Conclusion

We propose a systematic and biologically motivated computational approach for extracting relevant information from

unlabeled sequence databases for the task of primary protein sequence classification using sequence kernels. We also

propose the use of the clustered neighborhood kernels to improve the classifier performance and remove the kernel

estimation bias caused by overly-represented sequences in large uncurated databases. Combined with two

state-of-the-art string kernels (spatial and mismatch), our framework significantly improves accuracy and achieves

the state-of-the-art prediction performance on semi-supervised protein remote fold recognition and remote homology

detection. The improvements in performance accuracy are matched with significantly reduced computational running

times. Just as one would need to cut and polish a gemstone to bring out its beauty, to take full advantage of the

unlabeled neighboring sequences, one also needs to carefully extract only relevant regions that are more likely to be

biologically or structurally related. The unlabeled sequences here resemble the unpolished gemstones; when used

as-is, they may carry unnecessary features and hence compromise the classification accuracy but once cut and

polished, they improve the accuracy of the classifiers considerably. Our approach can be directly extended to other

challenging analysis tasks, such as clustering, functional prediction, or localization of protein sequences.
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Tables

Table 1: Experimental results on the remote homology detection task for all competing methods using the triple(1,3)

kernel.
neighborhood

(no clustering)
clustered neighborhood

dataset ROC ROC50 p-value ROC ROC50 p-value

PDB

full sequence .9476 .7582 - .9515 .7633 -

region .9708 .8265 .0069 .9716 .8246 .0045

no tails (full seq.) .9443 .7522 .5401 .9472 .7559 .5324

max length (full seq.) .9471 .7497 .4407 .9536 .7584 .5468

Swiss-Prot

full sequence .9245 .6908 - .9464 .7474 -

region .9752 .8556 2.46e-04 .9732 .8605 1.5e-03

no tails (full seq.) .9361 .6938 .8621 .9395 .7160 .6259

max length (full seq.) .9300 .6514 .2589 .9348 .6817 .1369

NR

full sequence .9419 .7328 - .9556 .7566 -

region .9824 .8861 1.08e-05 .9861 .8944 2.2e-05

no tails (full seq.) .9575 .7438 .6640 .9602 .7486 .8507

max length (full seq.) .9513 .7401 .8656 .9528 .7595 .8696
∗ p-value: signed-rank test on ROC50 scores against

full sequence in the corresponding setting

Table 2: Experimental results for all competing methods on the remote homology detection task using the

mismatch(5,1) kernel.

neighborhood

(no clustering)
clustered neighborhood

dataset ROC ROC50 p-value ROC ROC50 p-value

PDB

full sequence .9389 .7203 - .9414 .7230 -

region .9698 .8048 .0075 .9705 .8038 .0020

no tails (full seq.) .9379 .7287 .9390 .9378 .7301 .7605

max length (full seq.) .9457 .7359 .4725 .9526 .7491 .3817

Swiss-Prot

full sequence .9253 .6685 - .9378 .7258 -

region .9757 .8280 .0060 .9773 .8414 .0108

no tails (full seq.) .9290 .6750 .9813 .9344 .6874 .5600

max length (full seq.) .9185 .6094 .1436 .9223 .6201 .0279

NR

full sequence .9475 .7233 - .9544 .7510 -

region .9837 .8824 1.7e-04 .9874 .8885 1.2e-04

no tails (full seq.) .9554 .7083 .7930 .9584 .7211 .7501

max length (full seq.) .9508 .7421 .7578 .9518 .7613 .9387
∗p-value: signed-rank test on ROC50 scores against

full sequence in the corresponding setting
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Table 3: Multi-class remote fold recognition using the triple(1,3) kernel

method Error Top-5 Error Balanced Error Top-5 Balanced Error F1 Top-5 F1

full sequence 50.81 17.92 71.95 27.80 28.92 73.93

region 36.81 10.91 52.58 20.07 49.69 81.26

no tails (full seq.) 48.21 19.71 70.42 33.37 30.91 73.39

max. length (full seq.) 51.63 23.13 76.96 39.21 26.85 66.99

Table 4: Multi-class remote fold recognition performance using the mismatch(5,1) kernel

method Error Top-5 Error Balanced Error Top-5 Balanced Error F1 Top-5 F1

full sequence 50.49 22.31 76.44 38.61 24.96 65.58

region 44.79 13.36 67.26 25.40 33.17 77.45

no tails (full seq.) 51.79 20.85 79.66 35.72 22.72 66.68

max. length (full seq.) 56.03 26.06 86.68 47.05 15.04 58.36

Table 5: Multi-class remote fold recognition using the mismatch(5,2) kernel

method Error Top-5 Error Balanced Error Top-5 Balanced Error F1 Top-5 F1

Without clustering

full seq. 50.16 21.82 67.17 32.55 37.43 71.40

region 42.83 13.68 61.43 22.63 40.36 79.19

no tails (full seq.) 50.16 21.82 71.81 32.59 30.17 69.12

max. length (full seq.) 52.44 24.43 77.31 39.17 23.98 65.22

With clustering

full seq. 50.33 19.71 70.04 27.21 32.10 75.03

region 40.88 13.68 57.86 22.82 47.54 79.03

no tails (full seq.) 48.37 20.68 69.83 32.27 31.48 70.03

max. length (full seq.) 52.44 23.29 77.05 36.52 26.84 68.02
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Table 6: Comparison of performance against the state-of-the-art methods for remote homology detection

PDB Swiss-Prot NR

ROC ROC50 ROC ROC50 ROC ROC50

triple(1,3), full seq. .9475 .7582 .9245 .6908 .9419 .7327

triple(1,3), region .9708 .8265 .9752 .8556 .9824 .8861

triple(1,3), region, clustering .9716 .8246 .9732 .8605 .9861 .8944

mismatch(5,1), full seq. .9389 .7203 .9253 .6685 .9423 .7233

mismatch(5,1), region .9698 .8048 .9757 .8280 .9837 .8824

mismatch(5,1), region, clustering .9705 .8038 .9773 .8414 .9874 .8885

profile(5,7.5) .9511 .7205 .9709 .7914 .9734 .8151

Table 7: Comparison with the state-of-the-art methods for multi-class remote fold recognition

method Error Top-5 Error Balanced Error Top-5 Balanced Error F1 Top-5 F1

mismatch (full seq.) 50.49 22.31 76.44 38.61 24.96 65.58

triple (full seq.) 50.81 17.92 71.95 27.80 28.92 73.93

mismatch (region) 44.79 13.36 67.26 25.40 33.17 77.45

triple (region) 36.81 10.91 52.58 20.07 49.69 81.26

profile(5,7.5) 45.11 15.80 71.27 31.55 32.34 75.68

profile(5,7.5)† 46.30 14.50 62.80 23.50 - -

†: directly quoted from [12]

Table 8: The number of neighbors (mean/median/maximum) and the number of observed features with and without

clustering for the remote fold recognition task

Method Without Clustering With Clustering

# neighbors # features # neighbors # features

full seq. 135/99/490 192,378,952 64/41/356 120,990,413

region 64/41/356 34,807,209 50/26/352 28,738,521

no tails (full seq.) 75/17/402 57,575,176 23/11/325 29,649,870

max. length (full seq.) 70/16/431 39,915,003 22/12/279 14,634,511

Table 9: Running time for kernel matrix computation (3860x3860), [s]

method mismatch(5,1) mismatch(5,2) triple(1,3)

full seq. 12,084 13,593 153

region 2,624 3,195 73

region+clustering 2,412 2,998 64
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