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Abstract

Background: In this work we consider barcode DNA analysis problems and address them using
alternative, alignment-free methods and representations which model sequences as collections of
short sequence fragments (features). The methods use fixed-length representations (spectrum) for
barcode sequences to measure similarities or dissimilarities between sequences coming from the
same or different species. The spectrum-based representation not only allows for accurate and
computationally efficient species classification, but also opens possibility for accurate clustering
analysis of putative species barcodes and identification of critical within-barcode loci distinguishing
barcodes of different sample groups.

Results: New alignment-free methods provide highly accurate and fast DNA barcode-based
identification and classification of species with substantial improvements in accuracy and speed over
state-of-the-art barcode analysis methods. We evaluate our methods on problems of species
classification and identification using barcodes, important and relevant analytical tasks in many
practical applications (adverse species movement monitoring, sampling surveys for unknown or
pathogenic species identification, biodiversity assessment, etc.) On several benchmark barcode
datasets, including ACG, Astraptes, Hesperiidae, Fish larvae, and Birds of North America, proposed
alignment-free methods considerably improve prediction accuracy compared to prior results. We
also observe significant running time improvements over the state-of-the-art methods.

Conclusion: Our results show that newly developed alignment-free methods for DNA barcoding
can efficiently and with high accuracy identify specimens by examining only few barcode features,
resulting in increased scalability and interpretability of current computational approaches to
barcoding.

Background
Identification of living species is one of the pressing tasks
in science and technology today, prompted by our need
to understand the natural biodiversity and its increasing
interaction with the human society.

However, development of comprehensive species identi-
fication strategies is impeded by the enormous bio-
diversity of life on Earth. Traditional morphological
identification of species is difficult, requires expertise of
highly trained taxonomists, and takes up enormous
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amounts of time. Species identification methods based
on molecular diagnostic technologies, including PCR,
are limited in the number of species they can identify
and lack standardization of technologies or are suscep-
tible to tissue conditions. DNA barcoding has been
recently introduced as a taxonomic tool for characteriz-
ing species using fragments of a DNA sequence from
standard gene regions, such as the mitochondrial DNA
(mtDNA) [1]. These relatively short sequences (about
650 symbols in the case of mtDNA) are used as markers
for discerning taxonomical identities of specimens using
the process of mtDNA extraction, fragment amplifica-
tion, sequencing and database lookup [2]. A critical
property of this particular region is its monophyletic
association: the content of mtDNA is often preserved
within a species and shows greater divergence between
than within species (sometimes 10× or more when sister
species are excluded) [3]. In particular, a region
corresponding to c oxidase subunit 1 or cox1 gene is
often used as a critical barcoding marker [1] that exhibits
such properties.

Barcoding has shown great promise in practice. DNA
barcodes can offer increased adaptability, robustness,
and predictive value for rapid and accurate identification
of species. For instance, barcoding analysis can result in
improved correct placement of previously unknown
species or increased resolution of specimens [4],
identification of fish products with high accuracy [5],
substitutes in fish species for human consumption [6] or
marketing of endangered specimens [7]. DNA barcoding
has been applied with great initial success to identifica-
tion across the spectrum of living species, from algea [8],
fungi [8], bacteria [9], to plants [10-12], spiders [13], fish
[14], birds [1], and rats [15].

Most current barcoding computational methods leverage
established modeling approaches from molecular phy-
logenetic analysis. Traditional barcoding methods, c.f.,
[1,16], are essentially tree-based phylogenetic
approaches where identification decisions are made
using a-priory threshold on the tree-induced distances.
Choosing an optimal threshold is a challenging task,
affected by variable relationship between the species
morphology and the cox1 content similarity. More
recently, sophisticated Bayesian and decision theory
approaches [17,18] have been proposed that attempt
to address this problem in a more systematic manner.
Traditional phylogenetic methods are also sensitive to
the choice of the sequence similarity metrics and the
presence of exogenous variations in the sequence (such
as those caused by bacterial cosegregation). Moreover,
methods of molecular phylogeny are not inherently
aimed at the task of sequence delineation, rather the
study of relationships at different points in evolutionary

history. As a consequence, they can also sometimes
exhibit high computational complexity, justified for the
complex analysis task but often unnecessary when the
goal is e.g., species identification.

More recently, methods that more directly tackle the
problem of barcode-based identifications have emerged.
Some of these methods, such as [16] use the tools of
generic but widely available and highly computationally
optimized biological sequence comparison (BLAST or
PSI-BLAST). Approach such as [19] even more immedi-
ately focuses on the prediction problem. However, a
number of challenges remain to be addressed, including
the accuracy of identification [16,18,20,21], as well as
the efficiency and scalability of computational methods.

In this study we investigate alignment-free kernel methods
for the DNA barcoding. Kernel-based classification has
demonstrated strong performance in many related tasks
of biological sequence analysis, such as protein classifi-
cation and remote homology detection [22-24]. In the
process, a number of kernel types or similarity measures
between sequences have been proposed, including
kernels derived from probabilistic models [25], k-mer
string kernels [22,23], and weighted-decomposition
kernels [26]. In this work we focus on k-mer string
kernels, and in particular the spectrum/mismatch kernel
methods. In our approach, species identification is
performed by first transforming variable-length
sequences into fixed-length representations (string spec-
tra) and then classifying resulting spectral representa-
tions into one of many established species classes using
state-of-the-art classification algorithm (e.g. nearest
neighbor or Support Vector Machine (SVM) classifiers
[27,28]). As a result, the alignment free kernel-based
species identification in our study demonstrates both
high accuracy, improved speed and classification perfor-
mance compared to previously employed DNA barcod-
ing identification methods.

Methods
In this section we discuss alignment-free analytics that
we propose to use for accurate and efficient multi-class
classification and identification of barcode sequences.

The spectrum kernel methods
Varying sequence length as well as the warping processes
within sequences (insertions/deletions) typically pre-
clude direct application of efficient computational
models and algorithms designed for data in Euclidean
spaces. The spectrum kernel methods [29,30] resolve this
problem using fixed-length representations of arbitrary
long sequences. These representations or features describe
the statistics of short substrings of length k, also known
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as k-mers, contained in the original sequence. Such
representations are both efficient to compute and
informative for the tasks of sequence analysis.

Consider a sequence X of length n represented as a string
of symbols (x1, x2,..., xn) from some alphabet Σ, xi Œ Σ. In
the case of DNA sequences this alphabet consists of the
set of the four DNA bases, {A, C, T, G}. Spectrum
methods construct a fixed-length feature vector F(X)
from this arbitrary long sequence by counting the
frequencies of occurrence of all k-mers xi, xi+1,..., xi+k-1
in X. This feature, the histogram of k-mers in X, is
commonly referred to as the sequence spectrum. The
spectrum’s domain has the dimension |Σ|k correspond-
ing to the total number of all possible fragments of
length k and, as a result, induces a fixed length
representation.

This concept is illustrated in Figure 1. A sequence from
the Astraptes set is represented as the histogram of
frequencies with which 5-long fragments (5-mers) occur
in that sequence. In the case of 5-mers there are Σk = 45 =
1024 such possible fragments, some of which are
identified on the horizontal axes of the count plots in
Figure 1. For instance, the fragment “CCGCG” occurs
three times. Hence, the Astraptes sequence is mapped to
a 1024-dimensional fixed-length representation. This
representation will be subsequently used to judge
similarities and dissimilarities between pairs of
sequences coming from the same or different species.

In practice the spectrum mapping will produce sparse
feature vectors of counts when either k is long or the
sequences are short. On average and assuming a random
sequence generation process, for a sequence of length n

Figure 1
Illustration of spectrum and mismatch features.
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each feature will appear n/|Σ|k times. While the use of
larger k is preferred to yield higher specificity of features,
it inadvertently can lead to representations or feature
spaces that are too high dimensional and produce low
similarity even between sequences in the same class
(species). As a consequence, it is often necessary to
increase the “density” of these features to allow sufficient
within-class sensitivity while maintaining the specificity
across classes.

Increasing density for a fixed k-mer length can alterna-
tively be viewed as the process of inexact sequence
matching. The mismatch kernel method [29] accom-
plishes this task using the following general mismatch(k,
m) |Σ|k-dimensional representation of sequence X:

(1)

where Im(a, g) = 1 if a Œ N (g, m) and N(g, m) denotes
the set of contiguous substrings of length k that differ
from g in at most m positions. In other words, in
addition to counting all k-mers a present in sequence X,
one also adds counts of k-mers that differ in at most
m symbols from each a. This process is illustrated in
Figure 1 where 5-mer “GGAAT” is mapped to a set of

·(|Σ|m - 1) + 1 = 5 × 3 + 1 = 16 similar k-mers, at
most one symbol (m = 1) different from “GGAAT”. The
induced feature vector Fk, m(X) has the same dimension
as the regular spectrum feature F(X), but is “denser”. The
choice of the maximum number of the mismatches (m)
allowed between any two particular k-mers typically
depends on whether sequences are relatively similar
(e.g. closely related families, m is small) or are far apart
(e.g. remote homologs, large values of m may be
needed). The exact spectrum kernel is a particular case
of the mismatch kernel and can be obtained from Eq. 1
by setting the number of mismatches m to zero (this will
result in counting only exact matches between k-mers).
Both mismatch and exact spectrum methods measure
similarity of sequences by comparing the fixed-length
features Fk, mof those sequences without performing any
sequence alignment. As we discuss in the next section,
the computational cost of evaluating this similarity is
linear in the length of the sequences, compared to
quadratic complexity required by alignment-based meth-
ods (e.g. Smith-Waterman) for similarity evaluation.
This leads to a potentially important advantage for these
methods when applied to large DNA barcode sets, which
we demonstrate empirically in our Results.

Alignment-free algorithms
Both mismatch and spectrum methods typically evaluate
similarity K(X, Y) of a pair of sequences by computing

the dot-product between their corresponding feature
vectors (Eq. 1):

(2)

Direct evaluation of the dot-product above for similarity
computation results in costly O(|Σ|kn) complexity. To
efficiently evaluate the dot-product, we first note that in
Eq. 2 the product Im(a, g)Im(b, g) is non-zero (i.e.
contributes to the total similarity/kernel value) only if g
is the neighbor for both a and b. We then write the dot-
product (Eq. 2) as follows:

(3)

where Ik, m(a, b) is the number of k-mers g shared by a
and b. We observe that the number of shared k-mers Ik,
m(a, b) depends on the Hamming distance (i.e., the
number of differences, in symbols, between the strings) d
(a, b) between a and b for a fixed alphabet Σ, the length
of the k-mer k, and the number of mismatches m (i.e. Ik,
m(a, b) can only have a fixed set of values with each
value corresponding to a particular Hamming distance).
Since the maximum Hamming distance that will result in
the non-zero Ik, m(a, b) is 2m, the dot-product in Eq. 3
reduces to computing the number of pairs (a, b), a Œ X,
b Œ Y, for each of possible Hamming distances from 0
to 2m:

(4)

As we show in [31], the mismatch/spectrum similarity
measure in the form as in Eq. 4 can be efficiently
computed in O(ck, mn) time, where ck, m is a constant that
depends only on the k-mer length and the maximum
number of allowed differences m but not on the
sequence length n. In the case of the exact spectrum
method, the complexity is O(kn), i.e. is linear in both the
sequence length n and the k-mer length k. It is also
important to note that we typically need to evaluate this
similarity for a set of N sequences (e.g., DNA barcode
samples). Instead of evaluating similarity for every pair
of N sequences, a task proportional to N2, in [31] we also
show that this can be accomplished in the time linear in
N. Hence, the overall complexity of evaluating the
mismatch(k, m) similarity on a set of N sequences of
maximal length n is O(ck, mnN). This results in significant
computational savings (speedup) when it is necessary to
compute similarity among a large number of sequences,
as may be the case with DNA barcodes.
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Prediction models
Given the similarity kernel for any pair of sequences, one
can consider several predictive tasks. One such task is the
classification of new sequence samples into one of the
previously seen classes. In the context of DNA barcoding,
this task can be interpreted as either the classification of
a barcode sample into one of the known species or the
verification task of resolving whether the sample belongs
to a particular species or not. We first consider the latter
(verification) task and then generalize it to the full
classification task. A very general class of predictive
models that relies on the similarity metric induced by the
kernel K computes the matching score between the query
sequence X and the previously seen sequences {X1,...,
XN} whose class assignments {y1,..., yN} are known. The
score is formed as

(5)

The sign of this score then typically indicates whether the
query X belongs to a particular class, f(X) > 0, or not. The
weights wi are set in a training procedure prior to making
predictions using a variety of available “learning”
algorithms that attempt to optimize the predictive
performance of this model. This verification model can
also be generalized to the classification setting, where the
sample is to be classified in one of M possible classes. In
that case one can construct the predictive model for each
class, fm(X) = Σiwm, iK(X, Xi), and make the final
prediction by finding the class with the maximum
score, y* = arg maxm fm(X).

In this work we consider two classes of algorithms that
have generally shown state-of-the-art performance on
prediction tasks. One is the simple Nearest Neighbor
classifier. In that setting wm, i is non-zero, i.e. wm, i = 1,
only for the sequence Xi (of class yi = m) which is
“closest”, or most similar, to the query sequence X.
Nearest neighbor classifiers are simple and have appeal-
ing (asymptotic) theoretical properties.

The second class of learning algorithms used in this work
is the well-known Support Vector Machine [28]. In the
view of the model above the SVM selects an optimal
subset of training sequences Xi (the so-called support
vectors) and sets their weights to maximize the models
predictive accuracy. In our work we use the “one-vs-rest”
SVM learning approach described in [32].

Results and discussion
To demonstrate the utility of the alignment-free
sequence representation for DNA barcode analytics we
primarily focus on the task of species identification. The

identification or classification task is one of the relevant
analytical problems considered so far in DNA barcoding
[16,18,20,21]. In this section we show that the spectrum-
based, alignment-free representation possesses several
interesting properties, among them the high accuracy of
the sample-to-species assignments as well as the compu-
tational efficiency. Moreover, the spectral representations
offer interesting insights into which sequence markers/
features within the standard barcode region (e.g. cox1)
serve as the most important discriminants among the
sets of species. This result has further implication on
computational efficiency but may also facilitate further
taxonomical studies. We perform the barcode-based
species classification experiments using several bench-
mark barcode datasets from various barcode collecting
campaigns for mammals, fish, birds, lepidoptera, etc. In
particular, we use seven data sets of DNA barcodes
including Astraptes (12 species), Hesperiidae (364
species), Bats of Guyana (96 species), Fish of Australia
(211 species), Birds of North America (656 species),
ACG (573 species), and Fish larvae (7 species). Astraptes,
Hesperiidae, Bats of Guyana, Birds of North America,
and Fish of Australia were compiled from the BOLD [33]
project. ACG set was published as a part of [34]. The Fish
larvae set appeared in [16]. Table 1 summarizes details
of these datasets.

Using these datasets, we consider barcode class predic-
tion problem as a multi-class classification problem
described in the Methods section. For the SVM predic-
tion approach, we use one-vs-rest setting to perform the
multi-class classification using binary predictors for each
class. We evaluate alignment-free similarity of DNA
barcodes using the spectrum/mismatch representations
of Section ‘The spectrum kernel methods’ and contrast it
to several standard similarity metrics employed for
biological sequences and DNA barcodes in particular.
In all experiments, we normalize the similarity/
kernel values K(X, Y) using K’(X, Y) = K(X, Y)/

to remove the dependency between
the kernel value and the sequence length. To perform our
experiments, we use an existing SVM implementation
from a standard machine learning package SPIDER [35]
with default parameters. For the spectrum/mismatch

Table 1: Barcode datasets

Dataset # species # barcodes

ACG 573 4267
Hesperiidae 364 2185
Astraptes 12 465
Bats of Guyana 96 840
Birds of North America 656 2589
Fish of Australia 211 754
Fish larvae 7 35
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kernel, we use mismatch(5,1) (k = 5, and m = 1) and
spectrum-10 (k = 10) kernels. To facilitate experiments
on large datasets, we use the kernel computation
algorithms proposed by Kuksa et al. in [31]. The data
and source code used in our experiments are available at
the supplementary website [36].

In the following, we first present results on multi-class
species identification problem using alignment-free
methods. We then focus on the analysis of within-
barcode markers and show the impact of the marker
selection on the identification accuracy. To illustrate the
ability of the similarity metric to reduce the within-
species dispersion while maintaining separability of
different species we use clustering analysis in the set of
experiments following the marker study. Finally, we
provide empirical running time analysis of our proposed
approach and contrast it with some state-of-the-art
methods.

Species identification
In the species identification experiments, we use the
nearest neighbor classifier and the SVM to predict class
assignments for query barcodes based on similarity
scores computed using alignment-based (Smith-Water-
man, Kimura, Hamming) and alignment-free methods
(spectrum and mismatch kernels). To discern the
predictive ability of different methods we consider a
cross-validation setting in which the species data is
randomly split into ten disjoint subsets. Nine of the
subsets are used to estimate the prediction models which
are subsequently evaluated on the remaining set, in a
repeated fashion. We report results averaged over the ten
folds and show the accuracy variation of each method.

Nearest neighbor approach
Classification performance for the nearest neighbor
approach using alignment-free kernel methods is sum-
marized in Table 2 where we compare cross-validation
error rates of the resulting classifiers on the benchmark
barcode datasets. We also report results obtained by
running PSI-BLAST search with default parameters on
these datasets. The results indicate that the alignment-
free spectral method generally shows the highest

classification accuracy. Compared to PSI-BLAST search,
the mismatch similarity exhibits similar results, typically
inferior to those of the spectral similarity. In Table 3 we
show classification performance of the spectrum method
for different values of k (k-mer length). The error rates
are shown for the nearest neighbor (1-NN) and for 3-NN
and 5-NN classifiers. We observe that the nearest
neighbor classifier displays the lowest error rates
compared to classifiers that use 3 or 5 nearest neighbors
for prediction. As we can see from the table, the
spectrum method is relatively robust to the choice of
the k-mer length, with values of k = 8 - 15 resulting in the
highest classification accuracy. We also note that the
experiments show that the smaller k are satisfactory
and increasing k much does not increase accuracy
significantly; smaller values of the k-mer length also
have lower computational complexity compared to the
larger values of k.

In Table 4, we show classification results contrasting the
spectral method with nearest neighbor predictors based
on more traditional, alignment-based similarity mea-
sures. We consider methods based on both global and
local alignments. The global alignment on the set of
sequences is obtained using the Needleman-Wunsch
algorithm with NUC44 scoring matrix and gap opening/
extending penalties set to 8. These settings result in
multiple alignments largely identical to those available
via BOLD [33] for the barcode sets of the publicly
available projects we use in our evaluation. Given the
global alignment, the sequence similarity is scored using
two metrics: the Hamming distance (0/1 mismatch/
match score) and the Kimura distance. For local
alignment-based pairwise scores we use the Smith-
Waterman scoring with the same parameters as the
global alignment model. The results in Table 4 indicate
that the alignment-free spectral similarity yields the
overall most accurate species predictors. The spectral
and Kimura-based distances produce comparable accura-
cies on three sets (Bats, Birds and Fishes of Australia). As
expected, the Hamming 0/1 scoring is typically inferior
to other methods as it does not include any measure of
varying evolutionary pressures exhibited across different
nucleotide pairs. The ACG and the Fish larvae sets are
both cases where the spectral method achieves the most
accurate prediction among the four contrasted scoring
metrics.

To better assess the predictive ability of different
measures we also compare the ranking quality of the
resulting classifiers on ACG, Hesperiidae, and Birds of
North America data sets in Figures 2, 3, and 4,
respectively. The ranking score can be used to ascertain
how closely the predictions of a model match those of
the ideal case as a function of the model specificity. For

Table 2: Nearest neighbor, 10-fold cross-validation error (%)

Dataset PSI-BLAST spectrum mismatch

ACG 3.07 ± 0.68 2.49 ± 0.87 3.63 ± 0.65
Hesperiidae 4.62 ± 0.97 3.57 ± 1.08 4.38 ± 1.49
Astraptes 13.82 ± 4.42 1.07 ± 1.81 1.50 ± 1.99
Bats 1.63 ± 1.22 1.63 ± 1.22 1.73 ± 2.01
Birds 7.46 ± 1.90 6.22 ± 1.50 7.29 ± 0.96
Fish Australia 5.62 ± 3.31 5.5 ± 3.27 5.29 ± 3.34
Fish larvae 2.86 2.86 5.71
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instance, the top-3 error rate reports the accuracy of
prediction if one assumes that correct prediction is made
whenever the true species class of a sequence is anywhere
among the top-3 scoring classes predicted by a model.
Top-1 error rate corresponds to the standard error rate.
The higher the q, the lower the top-q errors are, at the
expense of the specificity of predictions. For good
models/similarity measure the ranking error rate typi-
cally drops off quickly. In our evaluations we observe
that the alignment-free spectrum method consistently
shows lower top-q error rates (n = 1...10) compared to
that of alignment-based (Kimura, Smith-Waterman,
Hamming) scoring methods (Figures 2, 3, and 4), with
the Kimura score approaching the spectrum for

intermediate values of n on the sets where the two
initially differ. On the ACG set, for instance, the Kimura
distance-based scoring becomes comparable to the
spectrum measure for n = 4, which suggests that further
tuning of the score parameters may improve Kimura
performance. However, doing so would require more
complex, most likely heterogeneous, sequence models.

The above sets of experiments indicate that the align-
ment-free spectral measure may be well-suited for the
DNA-barcode based species prediction tasks. In contrast
with the alignment methods, the spectral alignment-free
scores leave out the need for sometimes complex and
sensitive global alignments. The benefit becomes more

Table 3: Classification performance of the k-spectrum method using nearest neighbor

dataset k = 3 k = 5 k = 8 k = 10 k = 15

1-NN (nearest neighbor)

ACG 4.24 ± 0.90 3.19 ± 0.93 2.58 ± 0.94 2.49 ± 0.87 2.35 ± 0.83
Hesperiidae 5.32 ± 1.33 4.21 ± 1.18 3.66 ± 1.07 3.57 ± 1.08 3.39 ± 0.93
Astraptes 1.91 ± 1.87 1.90 ± 2.08 1.48 ± 1.75 1.07 ± 1.81 1.07 ± 1.81
Bats of Guyana 1.87 ± 1.36 1.63 ± 1.22 1.63 ± 1.22 1.63 ± 1.22 1.63 ± 1.22
Birds 7.77 ± 1.26 6.68 ± 1.22 6.42 ± 1.34 6.22 ± 1.50 6.13 ± 1.65
Fish Australia 5.47 ± 3.26 5.35 ± 3.36 5.35 ± 3.36 5.50 ± 3.27 5.50 ± 3.27
Fish larvae 8.57 5.71 2.86 2.86 2.86

3-NN

ACG 10.20 ± 1.31 8.98 ± 1.23 8.54 ± 1.11 8.67 ± 1.33 8.63 ± 1.21
Hesperiidae 15.55 ± 1.25 14.30 ± 1.46 14.22 ± 1.50 14.40 ± 1.85 14.30 ± 2.00
Astraptes 2.78 ± 2.49 2.36 ± 2.16 2.36 ± 2.16 2.15 ± 2.29 1.70 ± 1.96
Bats of Guyana 3.77 ± 1.68 4.46 ± 2.06 4.35 ± 2.01 4.46 ± 2.06 4.46 ± 2.06
Birds 20.23 ± 2.64 19.58 ± 2.48 18.88 ± 2.29 18.99 ± 2.22 18.37 ± 2.07
Fish Australia 12.44 ± 5.67 12.32 ± 5.68 12.31 ± 5.38 12.42 ± 5.46 11.93 ± 5.06
Fish larvae 14.29 14.29 11.43 11.43 11.43

5-NN

ACG 13.41 ± 2.00 12.42 ± 1.40 11.49 ± 1.28 11.49 ± 1.25 11.28 ± 1.20
Hesperiidae 19.70 ± 1.71 19.64 ± 2.62 18.63 ± 2.21 18.54 ± 2.17 18.22 ± 2.17
Astraptes 3.43 ± 3.09 3.01 ± 2.76 2.14 ± 1.74 1.70 ± 1.96 1.06 ± 1.12
Bats of Guyana 6.09 ± 3.01 5.85 ± 3.23 5.73 ± 2.77 5.87 ± 2.94 5.61 ± 2.79
Birds 27.32 ± 2.50 26.26 ± 2.17 26.49 ± 2.11 26.42 ± 2.44 26.10 ± 2.36
Fish Australia 19.40 ± 5.91 18.85 ± 6.15 19.28 ± 5.28 18.36 ± 5.04 18.81 ± 4.64
Fish larvae 22.86 22.86 22.86 22.86 22.86

Table 4: Nearest neighbor performance (10-fold cross-validation error, %)

Dataset Spectrum Hamming Kimura Smith-Waterman

ACG 2.49 ± 0.87 11.44 ± 1.52 5.51 ± 0.86 3.66 ± 0.66
Hesperiidae 3.57 ± 1.08 14.49 ± 2.36 3.81 ± 1.26 5.45 ± 1.20
Astraptes 1.07 ± 1.81 3.61 ± 2.77 1.71 ± 1.96 1.64 ± 1.03
Bats Guyana 1.63 ± 1.22 2.72 ± 1.83 1.63 ± 1.22 1.63 ± 1.22
Birds of North America 6.22 ± 1.50 18.38 ± 2.05 6.02 ± 1.36 8.20 ± 1.53
Fish Australia 5.50 ± 3.27 5.87 ± 4.01 5.35 ± 3.36 5.35 ± 3.36
Fish larvae† 2.86 11.43 8.57 5.71

† leave-one-out validation error is reported
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significant if one keeps in mind that any addition of new
sequences to the set may require (global) re-alignments
within a set, the step not necessary in the case of
spectrum scores.

One other particularly interesting conclusion is that the
spectral methods are better than or similar to the
alignment-based scoring metrics even when those
metrics take into account differences in evolutionary

pressures across different sequence symbols, either
imposed by the alignment parameters or the scoring
such as that of the Kimura model. This observation
should be placed in the context of our alignment-free
methods that use the 0/1 scoring but within the short
sequence fragments only. Using such scoring on the full
sequence scale, as in the Hamming distance measure
above, is bound to produce inaccurate species matches.
Another important conclusion is that in the case of
barcodes the mismatch alignment-free measures gener-
ally result in similarities that less accurately model the
distribution of sequences within and across different
species compared to the exact spectrum methods. This is
in contrast with other data domains where the mismatch
features have been successfully applied, such as that of
the protein sequences [31]. Two factors play a role in this
discrepancy. The protein sequences, from the point of
our mathematical representation, live in higher-dimen-
sional spaces due to the increased alphabet size (20 vs.
4) and hence may require a looser notion of matching.
Another factor is the variability within classes (species in
barcodes and, e.g., superfamilies in proteins); protein
sequences with the same class typically exhibit much
higher primary sequence variability than do the DNA
barcodes within taxonomic groups. As a consequence,
the mismatch measures may not be deemed necessary
for the DNA barcoding analytics. A final comment relates
to the complexity of computing the proposed measures
in conjunction with their predictive performance. As we
will demonstrate in Section ‘Experimental running time
analysis’, the alignment-free spectral methods generally
incur significant computational advantage over the
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Figure 2
Ranking quality. Comparison of top-q error rates on ACG
dataset for the spectrum (alignment-free) method and
alignment-based methods.
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Figure 3
Ranking quality. Comparison of top-q error rates on
Hesperiidae dataset for the spectrum (alignment-free)
method and alignment-based methods.
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Ranking quality. Comparison of top-q error rates on Birds
dataset for the spectrum (alignment-free) method and
alignment-based methods.
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competing alignment-based measures. This can be a
deciding factor when the methods are applied to large
barcode sets or in instances when new samples become
available and the (global) re-alignment is not desirable.

SVM-based classification
SVM-based classifiers are typically regarded as state-of-
the-art predictors across a wide span of modeling
problems. We therefore explore the use of this class of
models in the DNA barcode setting. Table 5 displays
cross-validation error rate of the SVM classifier on the
barcode sets in our study for the two alignment-free
scoring metrics of interest. The results demonstrate that
using SVM classifiers with alignment-free methods
results in similar performance compared to the pre-
viously examined nearest neighbor approach. We
observe slight but insignificant improvements in average
error rates for the spectrum method on ACG, Hesper-
iidae, and Astraptes data sets, e.g. error rate reduces from
1.07 to 0.86 on Astraptes data set. These results are not
unexpected, given the relatively large number of classes
(species) in these settings as well as the already low error
rates of the nearest neighbor predictor. At the same time,
the results suggest that the spectral scoring metric for
DNA barcodes appears to fairly accurately reflect the
sequence diversity within and between species, and is
not significantly affected (nor can be further shaped) by
the choice of the predictor/classifier algorithm. We
finally note that in our experiments which are not
reported here we observed that other measures, which
rely on global or local alignments such as the ones in
Section ‘Nearest neighbor approach’, are similarly not
affected by the choice of classification models.

Comparison with previously published results
We observe that alignment-free methods considerably
improve identification accuracy compared to the pre-
viously reported results of [18,20]. For example, on
Astraptes dataset [37], the test error rate of the multi-class
SVM is only 0.86% compared to 9% in [20] or 20% in
[18]. These results further signify the potential of the
proposed measures as applied to the barcoding-based
prediction task as well as to barcode analytics in general.

Barcode marker selection
DNA barcodes provide full-length barcode sequences for
barcode analytics. However, there are situations where
only certain (few) markers within the barcode may be
sufficient to accurately and rapidly perform the analytic
task. Species prediction based on barcodes, and in
particular for the case of a limited number of species,
is one such task. The use of markers instead of the full
sequence may increase the robustness of predictions by
eliminating the potentially irrelevant portions of the
barcodes that can also contain errors in barcode data
collection. Identification of sequence markers can be
also interesting from the perspective of further within-
sequence loci analysis. Finally, the use of few markers
can also be advantageous from the computational
perspective. In this section, we evaluate the marker or
feature selection performance using alignment-free
methods.

In our experiments, we use the RELIEF [38] feature
selection algorithm to find subsets of discriminative
spectral markers. Using the k-mer or fragment notation
we introduced previously, the markers correspond to
those k-mers most relevant for species identification.
Table 6 displays error rates of the nearest neighbor
classifiers as a function of the number of selected
markers.

As evident from the table, using marker selection results
in the performance similar to that when full barcode
sequences are used. Even when only few (about 200-
500) markers are selected the alignment-free methods
still result in accurate prediction and perform on-par

Table 6: Feature selection performance using alignment-free methods (error, %)

# features selected
Dataset Full feature set (1048576 feat.) 4096 2048 1024 512 200 100

ACG 2.49 ± 0.87 2.51 ± 0.95 2.79 ± 1.02 3.00 ± 0.96 3.17 ± 0.86 3.52 ± 0.64 4.48 ± 0.86
Hesperiidae 3.57 ± 1.08 3.53 ± 1.12 3.80 ± 1.22 4.17 ± 1.05 4.40 ± 1.15 4.81 ± 1.30 5.64 ± 1.20
Astraptes 1.07 ± 1.81 0.44 ± 0.92 0.44 ± 0.92 0.44 ± 0.92 0.44 ± 0.92 0.64 ± 1.03 1.49 ± 1.75
Bats of Guyana 1.63 ± 1.22 1.63 ± 1.22 1.63 ± 1.22 1.63 ± 1.22 1.63 ± 1.22 1.63 ± 1.22 1.63 ± 1.22
Birds 6.30 ± 1.80 6.45 ± 1.82 6.94 ± 2.08 7.13 ± 2.05 7.41 ± 1.77 9.10 ± 1.64 9.84 ± 1.99
Fish of Australia 5.50 ± 3.27 5.35 ± 3.36 5.35 ± 3.36 6.14 ± 3.50 6.80 ± 3.15 8.32 ± 2.75 9.51 ± 2.40
Fish larvae 2.86 0 0 0 0 0 0

Table 5: SVM 10-fold cross-validation error rate (%)

Dataset spectrum (k = 10) mismatch

ACG 2.32 3.48
Hesperiidae 3.25 3.36
Astraptes 0.86 1.07
Bats 1.63 1.67
Birds 5.99 7.09
Fish Australia 5.35 5.35
Fish larvae 2.86 5.71
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with alignment-based methods, while being computa-
tionally more efficient, as we show in Section Experi-
mental running time analysis. Note that the number of
selected markers (e.g., 100) is the total number of marker
per set of all sequences and species. The average number
of markers per sequence is typically between 20% and
40% of the total number of markers (i.e., when top 500
markers are selected, each sequence is represented with
about 100-200 loci, a reduction of 70% to 85% from the
approximately 650 bases of the full barcode). It is also
interesting to note that selecting a smaller set of markers
instead of the full barcodes can sometimes lead to more
robust and accurate identification. For instance, in the
case of Fish larvae set the use of fewer features increases
the accuracy. One reason for this may be the presence of
distractors or sequencing errors that are eliminated when
only the most critical markers are selected.

Figures 5, 6, 7, 8, 9, 10 show, for various barcode sets,
the sequence-marker location maps for the top-100
spectrum features (highlighted in different colors). These
marker location maps display how the identified top
features are positioned within the barcodes. In the
figures, the vertical axis corresponds to individual
barcode sequences and the horizontal axis corresponds
to the position within the aligned (for visualization
purpose only) sequences. The blue horizontal lines in
the figures indicate species class boundaries, while the
color bars next to the maps indicate the color-to-marker
index correspondences. For completeness Tables 7, 8, 9,
10, 11, 12 show the corresponding top-100 spectrum
markers, ranked by the weights assigned by the feature
selection algorithm.

The results indicate that different species classes have
distinct distributions (in terms of both spectrum marker
types and their locations) of the first few spectrum
markers (top 100 shown). This allows one to accurately
distinguish species between each other by solely using
the marker sets. As a consequence, these small sets of
features can serve as signatures for efficient and accurate
classification and identification, among the set of
considered species.

Figure 5
Species sequence map for Hesperiidae data set (top
100 spectrum (k = 10) features).

Figure 6
Species sequence map for Astraptes data set (top 100
spectrum (k = 10) features).

Figure 7
Species sequence map for Bats of Guyana data set
(top 100 spectrum (k = 10) features).
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New species detection
In the classification task that we considered in previous
sections, a species label for a new barcode is predicted
according to the class (species) models learned from
training examples. In this section we consider the
problem of identifying whether a barcode belongs to a
species in the training set or to a new, unknown species.

We simulate the new species detection by holding out
barcode samples from one of the species in the barcode

dataset. Barcode samples belonging to this species are
then presented to the model that only contains barcodes
from the remaining “known” species. The query barcode
is labeled as a new species if its distance to the nearest
barcode in the “known species” set exceeds the average
distance between barcodes in the class of that closest
known species barcode. Otherwise, the query barcode is
assigned to the class of the closest known species. We
then measure the new species detection error rate by
holding out each species in the dataset and averaging the
individual species error rates. The average new species
detection error rates are reported in Table 13. The error
rates in Table 13 are, thus, the errors from assigning a
sample from held-out classes (i.e. new species) to the
existing train classes (known species). Table 14 shows
new species detection error rates in a slightly more
comprehensive but also more realistic task, where we
held-out not only the barcodes from the “unknown”
species but also some random barcodes from the known
species. Hence, the error rates in Table 14 include errors
from incorrectly assigning the “new species” label to the
barcode samples from one of the known classes but also
the errors from assigning the query barcode from new
species to one of the existing classes.

As we can see from the results, using the nearest
neighbor approach results in about 85-90% correct
identification of the samples belonging to new species.
To further investigate the errors committed here we show
a slightly more informative representation of the new
species detection results in Figure 11. The black curve in
each panel indicates the number of classes (vertical axis)
with the detection accuracy equal to or higher than the

Figure 8
Species sequence map for Birds of North America
data set (top 100 spectrum (k = 10) features).

Figure 9
Species sequence map for Fish of Australia data set
(top 100 spectrum (k = 10) features).

Figure 10
Species sequence map for Fish larvae data set (top
100 spectrum (k = 10) features).
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Table 7: Top-100 spectrum features for Hesperiidae data set

rank feature rank feature rank feature rank feature

1 TTATTATTAT 26 ATTAATATAC 51 TTTTTATAGT 76 GGAGCCCCTG
2 ATTATTATTA 27 CTTTCCCCCG 52 TTTTTTATAG 77 TATTAATTTC
3 TATTACCCCC 28 GCTTTCCCCC 53 ATTAATTTCA 78 AATATTGCTC
4 CCCCCTCTTT 29 TTAATATACG 54 TAATATACGA 79 TTTTTGATCC
5 AATTTTATTA 30 TATTATAATT 55 GTTTATCCCC 80 TTTTTTGATC
6 AGGAGCTATT 31 AGCTTTCCCC 56 TTTTTTTATA 81 ATATTGCTCA
7 ATTGCCCATC 32 GCTCCTGATA 57 CCTTCTTTAA 82 GAGCCCCTGA
8 TTGCCCATCA 33 TAATTTTATT 58 TGGAGATGAT 83 ATTGCTCATC
9 TTAGGAGCTC 34 CTCCTGATAT 59 TTATTACCCC 84 TGCTCATCAA
10 TCAAATACCT 35 TCCTGATATA 60 TTTATCCCCC 85 TTGCTCATCA
11 ACCTTTATTT 36 CTAATATTGC 61 CCCCTCTTTC 86 ATTATTAATT
12 TAGGAGCTCC 37 TAGGAGCCCC 62 ATTTAGCAAT 87 CTCATCAAGG
13 ATTTTATTAC 38 TGATCAAATA 63 GATTTAGCAA 88 GCTCATCAAG
14 GGAGCTATTA 39 TTAATTTTAT 64 TATTATTATT 89 TACCCCCCTC
15 ATTAGGAGCT 40 TTTGATCAAA 65 AGGAGCTCCT 90 TAGCTTTCCC
16 TATTGCCCAT 41 TTGATCAAAT 66 AATATTGCCC 91 ATATTAGGAG
17 CAAATACCTT 42 CTTTATTTGT 67 ATATTGCCCA 92 TATTAGGAGC
18 TGCCCATCAA 43 CCTTTATTTG 68 ATTATTAATA 93 TACTATTGTT
19 AATACCTTTA 44 TATTAATATA 69 ATTATTACCC 94 ATAGCTTTCC
20 AAATACCTTT 45 ATTAATTTTA 70 TTATTAATAT 95 CAATTATTAA
21 CCCCTGATAT 46 TACCTTTATT 71 AGATGATCAA 96 ACAATTATTA
22 GCCCCTGATA 47 AATTTTTTCT 72 GAGATGATCA 97 TTTAGCAATT
23 CCCATCAAGG 48 TATAGCTTTC 73 GGAGATGATC 98 CCCCCGAATA
24 CCCTGATATA 49 AGCCCCTGAT 74 TTTTATAGTT 99 TCCCCCGAAT
25 GCCCATCAAG 50 ATACCTTTAT 75 TTACCCCCCT 100 TTCCCCCGAA

Table 8: Top-100 spectrum features for Astraptes data set

rank feature rank feature rank feature rank feature

1 TATACCAACA 26 CTTATATCAA 51 AATGGAGCTG 76 GGAGGAGACC
2 TTATACCAAC 27 TATATCAACA 52 ATGGAGCTGG 77 ATCTTGCCGG
3 TGAAAATGGA 28 TATCAACACT 53 GAAAATGGAG 78 CATCTTGCCG
4 AACTTCTTTA 29 TCAACACTTA 54 AATATACGAA 79 TCATCTTGCC
5 ACTTCTTTAA 30 TCTTATATCA 55 ATATACGAAT 80 CCGGTATTTC
6 CTTCTTTAAG 31 TTATATCAAC 56 ATTAATATAC 81 CGGTATTTCA
7 CTTTAAGATT 32 ACCCCCATCT 57 TAATATACGA 82 CTTGCCGGTA
8 TCTTTAAGAT 33 ATTACCCCCA 58 TATACGAATT 83 GCCGGTATTT
9 TTCTTTAAGA 34 ATTATTACCC 59 TATTAATATA 84 TCTTGCCGGT
10 TTTAAGATTA 35 TACCCCCATC 60 TTAATATACG 85 TGCCGGTATT
11 GAACTTCTTT 36 TATTACCCCC 61 AAAATGGGGC 86 TTGCCGGTAT
12 GGAACTTCTT 37 TTACCCCCAT 62 AAATGGGGCT 87 ATACGAATTA
13 TGGAACTTCT 38 TTATTACCCC 63 AATGGGGCTG 88 TACGAATTAA
14 AATCTTATAC 39 AATAATAGGT 64 ATGGGGCTGG 89 ACGAATTAAT
15 ACCAACACTT 40 AATAGGTGCC 65 GAAAATGGGG 90 AATATGCGAA
16 ATACCAACAC 41 AGGTGCCCCA 66 GGCTGGTACA 91 ATATGCGAAT
17 ATCTTATACC 42 ATAGGTGCCC 67 GGGCTGGTAC 92 ATGCGAATTA
18 CCAACACTTA 43 GGTGCCCCAG 68 GGGGCTGGTA 93 ATTAATATGC
19 CTTATACCAA 44 GTGCCCCAGA 69 TGAAAATGGG 94 GCGAATTAAT
20 TACCAACACT 45 TAGGTGCCCC 70 TGGGGCTGGT 95 TAATATGCGA
21 TCTTATACCA 46 TTGATTATTA 71 AGGAGACCCA 96 TATGCGAATT
22 AATCTTATAT 47 TGGAGGATTT 72 AGGAGGAGAC 97 TATTAATATG
23 ATATCAACAC 48 TGCCCCAGAT 73 GAGACCCAAT 98 TGCGAATTAA
24 ATCAACACTT 49 AAAATGGAGC 74 GAGGAGACCC 99 TTAATATGCG
25 ATCTTATATC 50 AAATGGAGCT 75 GGAGACCCAA 100 AATTGGAGGA
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corresponding value on the horizontal axis, for each of
the barcode datasets. For example, in the ACG set there
are about 480 species that can be predicted with the
accuracy of 90% or higher. The performance of an ideal

method would result in the horizontal solid-red line. In
all cases, performance of the spectrum method relatively
closely follows the ideal method. Majority of incorrect
assignments occur on very few species, which is evident

Table 9: Top-100 spectrum features for Bats of Guyana data set

rank feature rank feature rank feature rank feature

1 ATAATTGGAG 26 AGCTTCTGAC 51 TTTCCCCGAA 76 GTAACAGCCC
2 TTGTAATAAT 27 CCTGTCCTAG 52 GTCTTATTAC 77 TAACAGCCCA
3 TTTGTAATAA 28 CTGTCCTAGC 53 TCTTATTACT 78 TGTTCTAGCA
4 ATAAGCTTCT 29 GCTTCTGACT 54 AGCCCATGCC 79 ATCACTATAC
5 TAAGCTTCTG 30 GTTCTAGCAG 55 TTATTACTAC 80 TCACTATACT
6 GTCCTAGCAG 31 TGTCCTAGCA 56 CCCATGCCTT 81 AAGCAGGAGT
7 TCCTAGCAGC 32 TTCTAGCAGC 57 GCCCATGCCT 82 CACTATACTA
8 CAACACTTAT 33 TCCTGTCCTA 58 TTATAATTGG 83 ACACTTATTC
9 CCTAGCAGCA 34 ATAGTAGGCA 59 ATTATAATTG 84 CCTAGCAGGC
10 AATATAAGCT 35 GTAACAGCTC 60 TATAATTGGA 85 AAACCTTAAT
11 ATATAAGCTT 36 TAACAGCTCA 61 AACAGCCCAT 86 AACCTTAATA
12 CTTCCTGTCC 37 AACAGCTCAT 62 TACCTATTAT 87 ACCTTAATAC
13 TTCCTGTCCT 38 ATCATAATTG 63 CCTGTTCTAG 88 TATTAGGTGA
14 AAGCTTCTGA 39 ATCAACACTT 64 CTGTTCTAGC 89 CCCCGAATAA
15 TCTTCCTGTT 40 TATCAACACT 65 TATTAATATA 90 CCCGAATAAA
16 ACAGCTCATG 41 TCAACACTTA 66 TTTATTACTA 91 TCTGACTCCT
17 CAGCTCATGC 42 TCATAATTGG 67 ATCAAACACC 92 TTCTGACTCC
18 AACACTTATT 43 ATATCAAACA 68 ATTAGGTGAT 93 TTTTATTACT
19 CTTCTGACTC 44 GAAGCAGGAG 69 CCTTTGTAAT 94 AGGTATCACT
20 TAGTAGGCAC 45 CTTCCTGTTC 70 GCCTTTGTAA 95 CTCAATATCA
21 ACAGCCCATG 46 TAATTGGAGG 71 TATCAAACAC 96 GGTATCACTA
22 CAGCCCATGC 47 TTCCTGTTCT 72 TCCTATTACT 97 GTAATAATTT
23 AATATAAAAC 48 AGTAGGCACT 73 CATAATTGGA 98 GTATCACTAT
24 ATATAAAACC 49 TCCCCGAATA 74 GAGCTATTAA 99 TAATAATTTT
25 TCTAGCAGCA 50 TTCCCCGAAT 75 GGAGCTATTA 100 TCAATATCAA

Table 10: Top-100 spectrum features for Birds of North America data set

rank feature rank feature rank feature rank feature

1 ATCACAATAC 26 ACTTCATCAC 51 AAACAACATA 76 GATTCTTTGG
2 ATAATCGGAG 27 AACCTAGCCC 52 ACAACATAAG 77 TATACCAACA
3 ACCAACACCT 28 AACTTCATCA 53 ATTCTTCGAC 78 TAGCATTCCC
4 TACCAACACC 29 ACCTAGCCCA 54 AACTGACTAG 79 ATAGCATTCC
5 AAGCTTCTGA 30 ATCAACATAA 55 ACTGACTAGT 80 CGGAGCCTCA
6 AACATAAGCT 31 ATCAACTTCA 56 AACAACATAA 81 AGACGACCAA
7 ACATAAGCTT 32 TCAACTTCAT 57 AGCAATCAAC 82 CATGCCTTCG
8 CATAAGCTTC 33 ATACCAAACC 58 CAACTTCATC 83 GTAGACCTAG
9 TCCTACTCCT 34 CTAATCACTG 59 GGAGGAGACC 84 TAGACCTAGC
10 CCCCTATTCG 35 CTCACAATAC 60 CTCTCACAAT 85 ACCCCCCTAT
11 TTCTTCGACC 36 ATAAGCTTCT 61 ACAATACCAA 86 CCCCCCTATT
12 CCCTATTCGT 37 TAAGCTTCTG 62 ACGCCGGAGC 87 AACCCCCCTA
13 TCTTCGACCC 38 TCGTAATAAT 63 CACGCCGGAG 88 ATGCCTTCGT
14 GCCTTCGTAA 39 CAACATAAGC 64 GTCCTAATCA 89 TCATCACAAC
15 CCTTCGTAAT 40 GCAACCTAGC 65 TCCTAATCAC 90 TTCATCACAA
16 CTTCGTAATA 41 GGCAACCTAG 66 TGATTCTTTG 91 AAACTGACTA
17 AGCTTCTGAC 42 TAATCACTGC 67 TCCTCCTCCT 92 ATCTTCTCCC
18 GCTTCTGACT 43 AATACCAAAC 68 GAGGAGACCC 93 TCTTCTCCCT
19 GAGCCTCAGT 44 CAATACCAAA 69 ACATAGCATT 94 AAACCCCCCT
20 GGAGCCTCAG 45 ATAATTGGAG 70 GACATAGCAT 95 CAAACCCCCC
21 CAACATAAAA 46 TTCGTAATAA 71 CAGTAGACCT 96 AACCTAAACA
22 TCACAATACC 47 ACCAAACCCC 72 TCAGTAGACC 97 ACCTAAACAC
23 TCCTCCTACT 48 TACCAAACCC 73 TTCTGATTCT 98 CGTAATAATC
24 CACAATACCA 49 CATAGCATTC 74 TCTGATTCTT 99 ATCGGAGGAT
25 TCAACATAAA 50 TCTCACAATA 75 CATAAAACCC 100 TAATCTTCTT
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from the sudden initial drops in the curves. We observe
that incorrect assignments of the samples from new
species to the existing classes often resulted from the
presence of the (nearly) duplicate sequences in the

training set. For instance, in the Astraptes dataset, query
sequences from SENNOV were closest to an identical
sequence which is also present in the YESENN species.
This points to the need for alternative sources of

Table 11: Top-100 spectrum features for Fish of Australia data set

rank feature rank feature rank feature rank feature

1 AACATAAAAC 26 GACTTCTTCC 51 ACAGTCTACC 76 ATCTTCTCCC
2 ACATAAAACC 27 TAATAATTGG 52 CAGTCTACCC 77 TCTTCTCCCT
3 ATTATTAACA 28 AACATAAGCT 53 TAAATAATAT 78 ACTATTATTA
4 TTATTAACAT 29 ACATAAGCTT 54 AGCTTCTGAC 79 TATTATTAAC
5 TAACATAAAA 30 AATATCAAAC 55 CATAAAACCC 80 ATAGTAATAC
6 ATTAACATAA 31 CAATATCAAA 56 CCCCGAATAA 81 AGGAGACCCA
7 TTAACATAAA 32 TTATGATTGG 57 CCCGAATAAA 82 CTATTATTAA
8 TCCTTCTCCT 33 ACCAACACCT 58 GCTTCTGACT 83 TAATATAAAA
9 ATTATTAATA 34 TACCAACACC 59 TAGTAATACC 84 TTAATATAAA
10 TTATTAATAT 35 TTATTACAAC 60 TCATGATTGG 85 TTGACCCTGC
11 TATTAACATA 36 GAGACCCAAT 61 CCTCGAATAA 86 AATAAACAAC
12 GAACAGTTTA 37 GGAGACCCAA 62 CTCGAATAAA 87 AATTTTATTA
13 TGAACAGTTT 38 TTTATTACAA 63 CTTCTTCTCC 88 ATTACAATGC
14 GAGGAGACCC 39 ATACCAATTA 64 AATACCAAAC 89 ATTTTATTAC
15 GGAGGAGACC 40 CTTTACCAAC 65 CAATACCAAA 90 TTACAATGCT
16 TGACTTCTTC 41 GGAGGAGGAG 66 GAGGAGGAGA 91 TTGGAAACTG
17 ATCAAACACC 42 TACCAATTAT 67 ATGAGCTTCT 92 TTTGACCCTG
18 TATCAAACAC 43 TTTACCAACA 68 ATGATTGGAG 93 TTTGGAAACT
19 TTCTTCTCCT 44 AACAGTCTAC 69 TGAGCTTCTG 94 AATAAATAAT
20 AATATAAAAC 45 ACAGACCGAA 70 TTATGATCGG 95 ATTAATATAA
21 ATATAAAACC 46 CAGACCGAAA 71 ATAAATAATA 96 GAGGGGACCC
22 CGAATAAATA 47 GAACAGTCTA 72 TTACCAACAC 97 GGAGGGGACC
23 GAATAAATAA 48 TGAACAGTCT 73 TTTCCTCAAT 98 AATATGAGCT
24 TCTTTGACCC 49 ATAATTGGTG 74 ATATCAAACA 99 ACCCTGCAGG
25 TTCTTTGACC 50 TCCTTCTTCT 75 ATAATTGGAG 100 AGACCGAAAC

Table 12: Top-100 spectrum features for Fish larvae data set

rank feature rank feature rank feature rank feature

1 CGCAATCCTC 26 CCAGTCAATG 51 AATAAAGGAT 76 AGTGGATCAT
2 GCAATCCTCT 27 CCCATGTGGA 52 AATAAATAAC 77 AGTTACAACT
3 GCGCAATCCT 28 CCCCATGTGG 53 AATAACCCCC 78 ATAAACAGAA
4 ATCAACGAAC 29 CCCCCATGTG 54 AATGACCCTA 79 ATAAAGGATT
5 CGCAATCCCC 30 CCCCGTGCAG 55 AATTGATCTC 80 ATAAATAACC
6 GATCAACGAA 31 CTCCCCGTGC 56 ACAACTCTAA 81 ATAACCCCCA
7 GCAATCCCCT 32 TCCAGTCAAT 57 ACAAGATGGA 82 ATCAACGGAC
8 GCGCAATCCC 33 TCCCCGTGCA 58 ACACTAAAGT 83 ATCATGTCAA
9 TCAACGAACC 34 TGACCAAAAA 59 ACAGCTGAGA 84 ATCCTCTTTT
10 ACCCTAGGGA 35 AAAAGATCCG 60 ACCCACCCTG 85 ATCGACGAGG
11 AGTTACCCTA 36 AAACAGAATT 61 ACCCCTCCTA 86 ATCTCCCCGT
12 CCCTAGGGAT 37 AAAGATCCGG 62 ACCCTGATGT 87 ATGACCCTAA
13 CCTAGGGATA 38 AAAGGATTGA 63 ACCTAGTTAC 88 ATGGAACCCA
14 CGATCAACGA 39 AAAGTGGATC 64 ACGGACCTAG 89 ATGTCAATGA
15 GTTACCCTAG 40 AAATAAAGGA 65 ACTAAAGTGG 90 ATGTGGAATG
16 TACCCTAGGG 41 AAATAACCCC 66 ACTCTAATAA 91 ATTGAACAAG
17 TTACCCTAGG 42 AACAAGATGG 67 AGAAGCGGGG 92 ATTGATCTCC
18 TCTGACCAAT 43 AACCCACCCT 68 AGACACTAAA 93 CAACGGACCT
19 TTTCAAGTCA 44 AACGGACCTA 69 AGAGTCCATA 94 CAACTCTAAT
20 CTGACCAAAA 45 AACTCTAATA 70 AGAGTTACAA 95 CAAGATGGAA
21 TCTGACCAAA 46 AAGATGGAAC 71 AGATGGAACC 96 CAATCCCCTC
22 AAACTAAGAG 47 AAGCGGGGAT 72 AGCGGGGATT 97 CAATCCTCTT
23 AACCCCCATG 48 AAGGATTGAA 73 AGCTGAGAGT 98 CAATGACCCT
24 ACCCCCATGT 49 AAGTGGATCA 74 AGGATTGAAC 99 CACCCCTCCT
25 CAGTCAATGA 50 AATAAACAGA 75 AGTCCATATC 100 CACCCTGATG
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information in cases where the barcodes may not be
sufficient to discriminate among species but also to the
need for additional curation in some of the datasets.

Barcode clustering
In this section, we consider the problem of arranging
barcode sequences into groups (clusters) to establish
relationships between sequences and automatically dis-
cover class structure. Clustering can be useful for putative
samples with no prior evidence of species assignments.
Clustering-based evaluation also allows one to eliminate
the influence of the classification training (weight estima-
tion) process, which is an additional factor that affects the
classification performance. As a consequence, clustering
may provide a more direct insight into the quality of the
similarity measure alone.

To evaluate the results of clustering we compare the
partitioning obtained by the clustering model with the
partitioning given by the known species membership. We
perform clustering experiments using the recently proposed
affinity propagation algorithm [39] which makes use of the
computed similarity scores. We report clustering results
using the alignment-free methods only in Table 15, in the
light of the classification results which we presented earlier
across different similarity metrics. As we can see from the
table, clustering of barcode datasets results in accurate
partitioning of the barcodes into groups that are similar to

Table 13: New species detection (average per-class error, %)

Dataset error # classes with 0% error

ACG 14.12 474/573
Hesperiidae 17.53 288/364
Astraptes 7.81 10/12
Bats of Guyana 5.80 90/96
Birds of North America 16.36 524/656
Fish of Australia 16.21 174/211

Table 14: New species detection (average error rate, %)

Dataset Error

ACG 10.29
Hesperiidae 10.88
Astraptes 8.47
Bats of Guyana 9.95
Birds of North America 15.54
Fish of Australia 14.92
Fish larvae 15.77

Figure 11
New species detection performance.
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the true species-induced classes. We use Rand [40] and
Jaccard indices to evaluate the clustering quality. Rand = (a +
d)/T, Jaccard = a/(a + b + c), where a is the number pairs with
the same class label assigned to the same cluster, b is the
number of points with the same class label assigned to
different clusters, c is the number of pairs with different class
labels placed into the same cluster, d is the number of pairs
with different labels placed into different clusters, and T is
the total number of pairs.

To further illustrate the clustering results, we show in
Figure 12 projections of the barcode data onto a 2D
plane. We note the agreement of species labels and
proximities in the embedded space. This suggests
possibility of using clustering with alignment-free
methods as an efficient and accurate tool for exploratory
analysis of newly obtained barcodes.

Experimental running time analysis
Computational complexity of evaluating similarity on
large sets of barcodes may be a prominent factor in

practical barcoding applications. We evaluate the com-
putational speed of different methods by measuring
running time for computing similarity scores among all
pairs of sequences in a barcode dataset. The running
times are obtained by running the optimized versions of
all targeted methods on a single 3.0 GHz quad core CPU
using 2 GB RAM (Dell PowerEdge 2950). Table 16
compares running times for the alignment-free kernel
methods as well as PSI-BLAST and alignment-based
(Smith-Waterman) methods. As we can see from the
table, alignment-free kernel methods are significantly
faster compared to computationally demanding align-
ment-based (Smith-Waterman) methods. For example, it
takes about 60 seconds to evaluate 4267-by-4267
similarity matrix using the spectrum method compared
to 64800 seconds (18 h) for computing the Smith-
Waterman scoring matrix. These results are not surpris-
ing given the complexity analysis mentioned in Section
‘Methods’ and further studied in [31]. The low computa-
tional complexity of the alignment-free scores, besides
its appeal for analytics on large datasets, also opens the

Table 15: Clustering results (using spectrum similarity measure)

Dataset #clusters error, % Rand index Jaccard index

ACG 644 2.84 99.85 83.96
Hesperiidae 382 4.44 99.79 86.42
Astraptes 17 1.51 95.59 81.59
Bats 98 0.95 99.21 86.58
Birds 650 5.25 99.90 86.59
Fish Australia 235 2.52 99.94 93.07
Fish larvae 7 2.86 98.66 95.51

Figure 12
Clustering results for barcode sequences using alignment-free spectrum method (data is projected onto
2D plane).
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possibility for using these metrics on conceptualized
handheld barcode scanners that may be designed in the
future.

Conclusion
In this work we demonstrate that newly developed
alignment-free methods can serve as efficient and
accurate analytical tools for DNA barcoding problems.
The new alignment-free methods provide highly accurate
and computationally efficient identification and classi-
fication of barcode sequences as we show on a set of
various barcode collections. Using new alignment-free
scoring approaches demonstrates excellent performance
in comparison with more computationally demanding,
traditional alignment-based methods. The use of align-
ment-free scoring methods allows discovery of natural
groups (clusters) in barcode collections that accurately
reflect the species-based groupings. This reflects poten-
tially high agreement between the proposed fragment-
induced sequence similarity measures and the within
and across species barcode diversity. Finally, we show
that the spectral methods also foster discovery of within-
barcode markers that point to critical differences among
barcodes of different sample groups. These markers can
serve both as the sparse and robust barcode codes and as
possible pointers to within barcode loci that deserve
further investigation. Our experiments finally suggest
that it may be possible to further improve the
performance of our spectral scores by merging them
with the position-based metrics, such as the Kimura
distance. Currently, the spectral kernels rely on the 0/1
scoring within each fragment. While implementing
Kimura scoring within k-mers is possible, a direct
implementation adversely affects the spectral algorithm’s
efficiency, with the complexity becoming quadratic in
the sequence length. This leaves open an avenue for
future research into efficient spectral barcoding algo-
rithms for arbitrary fragment scores.
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