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ABSTRACT
String kernel-based machine learning methods have yielded
great success in practical tasks of structured/sequential data
analysis. They often exhibit state-of-the-art performance
on tasks such as document topic elucidation, biological se-
quence classification, or protein superfamily and fold predic-
tion. However, typical string kernel methods rely on anal-
ysis of discrete 1D string data (e.g., DNA or amino acid
sequences). This work introduces new 2D kernel methods
for sequence data in the form of sequences of feature vectors
(as in biological sequence profiles, or sequences of individual
amino acid physico-chemical descriptors). On three protein
sequence classification tasks proposed 2D kernels show sig-
nificant 15-20% improvements compared to state-of-the-art
sequence classification methods.
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1. INTRODUCTION
Analysis of large-scale sequential data has become an im-
portant task in machine learning and data mining, inspired
in part by numerous scientific and technological applications
such as the document and text classification or the analy-
sis of biological sequences. Classification of string data, se-
quences of discrete symbols, has attracted particular interest
and has led to a number of new algorithms [1, 6, 12, 9, 17].
These algorithms often exhibit state-of-the-art performance
on tasks such as protein superfamily and fold prediction [6,
9, 10, 14], or DNA sequence analysis [8].

A family of state-of-the-art approaches to scoring similarity
between pairs of sequences relies on fixed length, substring
spectral representations and the notion of mismatch kernels,
c.f. [6, 12]. There, a sequence is represented as the spectra
(counts) of all short substrings (k-mers) contained within
a sequence. The similarity score is established by exact or
approximate matches of k-mers. Initial work, e.g., [12, 16],

has demonstrated that this similarity can be computed using
trie-based approaches in O(km+1|Σ|m(|X|+|Y |)), for strings
X and Y with symbols from alphabet Σ and up to m mis-
matches between k-mers. More recently, [7] introduced lin-
ear time algorithms with alphabet-independent complexity
applicable to computation of a large class of existing string
kernels.

However, typical spectral models (e.g., mismatch/spectrum
kernels, gapped and wildcard kernels [10, 12]) essentially
rely on symbolic Hamming-distance based matching of 1D
k-mers. For example, given a 1D sequence X over alpha-
bet Σ the spectrum-k kernel [11] and the mismatch-(k,m)
kernel [12] induce |Σ|k-dimensional representation

Φk,m(X) =

(∑
α∈X

Im(α, γ)

)
γ∈Σk

(1)

where Im(α, γ) = 1 if α ∈ Nk,m(γ), and Nk,m(γ) is the
mutational neighborhood of γ, the set of all k-mers that differ
from γ by at most m mismatches.

We note that existing k-mer string kernels essentially use
only 1D discrete sequences and Hamming-based matching,
while input data may often be represented in the form of
sequences of R-dim. (real-valued) feature vectors (2D se-
quences). This is the case, for instance, in commonly used
profile representations [6, 4] of amino acid sequence in bi-
ological sequence analysis, or representations of proteins as
sequences of individual amino acid physico-chemical descrip-
tors [18, 20]; such feature sequences (2D) can provide richer
and more accurate representations for biological sequences [6,
18].

In this work, we consider an approach that directly exploits
these richer R-dim. feature sequences (e.g., sequence pro-
files or descriptor sequences) and propose general, simple
2D representations of sequences (Sec. 3). We then intro-
duce a class of 2D similarity kernels that allows efficient
inexact matching and classification of sequence inputs in
the form of sequences of R-dim. feature vectors (Sec. 3.3).
The developed approach is applicable to modeling of both
discrete- and continuous-valued sequences, such as biolog-
ical sequence profiles, or sequences of amino acid descrip-
tors. Experiments using the new 2D kernels on protein re-
mote homology detection and fold prediction show excellent
predictive performance (Sec. 4) with significant 15%-20%
improvements in predictive accuracy over the existing state-
of-the-art sequence classification methods.



2. RELATED WORK
Over the past decade, various methods have been proposed
to solve the sequence classification problem, including gener-
ative, such as HMMs, or discriminative approaches. Among
the discriminative approaches, in many sequence analysis
tasks, string kernel-based [19] methods provide some of the
most accurate results [6, 12, 17, 10, 9, 2].

The key idea of basic string kernel methods is to apply a
mapping Φ(·) to map sequences of variable length into a
fixed-dimensional vector space. In this space a standard
classifier such as a support vector machine (SVM) [19] can
then be applied. As SVMs require only inner products be-
tween examples in the feature space, rather than the feature
vectors themselves, one can define a string kernel which com-
putes the inner product in the feature space without explic-
itly computing the feature vectors:

K(X,Y ) = 〈Φ(X),Φ(Y )〉, (2)

where X,Y ∈ D, D is the set of all sequences composed of
elements which take on a finite set of possible values from
the alphabet Σ.

Sequence matching is frequently based on co-occurrence of
exact sub-patterns (k-mers, features), as in spectrum ker-
nels [11] or substring kernels [21]. Inexact comparison in
this framework is typically achieved using different families
of mismatch [12] or profile [6] kernels. Both spectrum-k and
mismatch(k,m) kernels directly extract string features from
the observed sequence, X. On the other hand, the profile
kernel, proposed by Kuang et al. in [6], builds a profile [4]
PX and then uses a similar |Σ|k-dimensional representation,
now derived from PX .

Most of existing string kernel methods essentially amount to
analysis of 1D sequences over finite alphabets Σ with 1D k-
mers as basic sequence features. However, sequences can of-
ten be represented in the form of sequences of feature vectors,
i.e. each input sequence X is a sequence of R-dim. feature
vectors which could be considered as R×|X| feature matrix
(i.e. 2D sequence). For example, protein sequences could
be considered as 2D sequences of R-dim. feature vectors
describing physical/chemical properties of individual amino
acids, or as sequence profiles describing each sequence po-
sition with probability distribution over amino acid charac-
ters.

In this work, we aim at methods that directly exploit these
richer 2D sequence representations (e.g., profiles or amino
acid descriptors) to improve accuracy and propose a family
of 2D similarity kernels(Sec. 3, 3.3) that as we show empiri-
cally (Sec. 4) provide effective improvements in practice over
traditional 1D sequence kernels for a number of challenging
sequence classification problems.

3. 2D SEQUENCE REPRESENTATIONS
In a typical setting, string kernels are applied to 1D string
data, e.g., amino acid sequences or DNA sequences. In
this work we consider alternative 2D representations for se-
quences (Fig. 1a) as sequences of R-dim. feature vectors. In
particular, we consider two representations:

1) Symbolic embedding. Encoding original continuous-valued
R-dim. feature vectors in discrete (binary) E-dim. space
using e.g. similarity hashing approach [22] (Figure 1a;
left subfigure);

2) Direct feature quantization. Directly quantizing each fea-
ture using, for example, uniform binning (Figure 1a; right
subfigure), i.e. representing original (real-valued) R×|X|
feature sequence as R× |X| discrete sequence.

In both approaches, the (real-valued) R × |X| feature se-
quence X is re-represented as E×|X| or |R|×|X| 2D discrete
feature sequence.

We will show in the experiments that using these 2D repre-
sentations can significantly (by 15-20%) improve predictive
accuracy compared to traditional 1D kernel representations
as well as other state-of-the-art approaches (Sec. 4).

In the following, we will discuss these proposed representa-
tion approaches in detail.

3.1 Direct feature quantization
In this approach, each feature f j , j = 1 . . . R is quantized by
dividing its range (f jmin, f

j
max) into finite number of inter-

vals. In the simplest case, the intervals can be defined, for
instance, using uniform quantization, where the entire fea-
ture data range is divided into B equal intervals of length
δ = (fmax − fmin)/B and the index of quantized feature
value Q(f) = (f − fmin)/δ is used to represent the feature
value f . Partitioning of the feature data range could also be
obtained by using 1D clustering, e.g. k-means, to adaptively
choose dicretization levels.

3.2 Discrete (symbolic) Embedding
Given input sequence X = x1, . . . , xn of R-dim. feature vec-
tors, each R-dim. vector could be mapped into discrete fea-
ture vectors using symbolic embedding E(·) as in, for exam-
ple, similarity hashing [22]. Using similarity hashing, input
sequence X = x1, ..., xn of R-dimensional feature vectors is
mapped intro a binary Hamming-space embedded sequence

E(X) = E(x1), ..., E(xn),

where E(xi) = ei1e
i
2 . . . e

i
B is a symbolic Hamming embed-

ding for item xi in X, with |E(xi)| = B, the number of bits
in a resulting binary embedding of xi. This embedding as
proposed in [22] essentially aims to minimize average Ham-
ming distance between binary embeddings corresponding to
similar R-dim. data points:

min
∑
α,β

S(α, β)d(E(α), E(β))

Under this embedding, the Hamming similarity, hα,β , be-
tween two B-dim. feature embeddings E(α) and E(β) is
proportional to the original similarity score S(α, β) between
R-dim. feature vectors α and β:

h(E(α), E(β)) ∝ S(α, β). (3)

Using this approach, originalR×|X| (real-valued) feature se-
quence X is represented as E×|X| discrete feature sequence,
which can then be used with the string kernel method.
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(a) Proposed approach. Input sequence X of R-dim feature vectors is represented
in 2D using direct feature quantization Q(X) or embedding E(X). 2D string
kernel is used to measure sequence similarities.

Figure 1: Proposed 2D representations.

3.3 2D similarity kernels
We now introduce efficient 2D kernels for the proposed 2D
sequence representations.

Similarity evaluation between two 2D sequences X and Y
under 2D matrix representations amounts to comparing pairs
of 2D submatrices contained in X and Y . A 2D string kernel
can be defined for 2D sequences X and Y as

K2D(X,Y ) =
∑

α2D∈X

∑
β2D∈Y

K(α2D, β2D) (4)

where α2D and β2D are |R| × k (or |E| × k) submatrices of
X and Y and K(α2D, β2D) is a kernel function defined for
measuring similarity between two submatrices. One possible
definition for K(·, ·) that we use in this work is row-based
similarity

K(α2D, β2D) =

R∑
i=1

I(αi2D, β
i
2D) (5)

where I(·, ·) is a similarity/indicator function for matching
1D rows αi2D and βi2D. The matching function I(·, ·) could
be defined as I(α, β) = 1 if d(α, β) ≤ m, and 0 otherwise
(similar to the mismatch kernel).

Using Eq. 5, 2D kernel in Eq. 4 can be written as

K2D(X,Y ) =

R∑
i=1

∑
α2D∈X

∑
β2D∈Y

I(αi2D, β
i
2D) (6)

which can be efficiently computed by running spectrum ker-
nel with 1D k-mer matching function I(·, ·) R times, i.e. for
each row b = 1 . . . R. The overall complexity of evaluating
2D kernel is then O(R ·k ·n), i.e. is linear in sequence length
n.

4. EXPERIMENTAL EVALUATION
We study the performance of our methods in terms of pre-
dictive accuracy on a number of challenging sequence clas-

sification problems using standard benchmark datasets for
protein sequence analysis.

Datasets and experimental setup. We test proposed meth-
ods on a number of multi-class sequence classification tasks:
(1) protein remote homology detection (SCOP dataset with
7329 sequences) [23, 6] (2) multi-class protein fold recogni-
tion (Ding-Dubchak dataset, 27 protein folds, 694 sequences) [3,
14], and (3) multi-class remote fold recognition [14].

We also compare with a number of other state-of-the-art
methods for sequence classification. For remote homology
and protein fold prediction tasks, we use BLOSUM amino
acid substitution vectors to obtain a 2D amino acid sequence
representation. We also use 2D sequence profiles and com-
pare with profile kernel approach [6].

We use state-of-the-art spectrum/mismatch [10] and spatial
(SSSK) [9] kernels as our basic 1D similarity kernels. For
direct feature quantization, we use uniform quantization of
each feature data range into B=32 bins (during testing for
values outside of the (fmin, fmax) range, we use special val-
ues of 0 and B+1 for values smaller than fmin or larger
than fmax). For discrete embedding with similarity hash-
ing, we use E = 8 bits. All experiments are performed
on a single 2.8GHz CPU. The datasets used in our exper-
iments and the supplementary data/code are available at
http://paul.rutgers.edu/~pkuksa/2Dstring.html.

Evaluation measures. For protein fold recognition tasks, the
methods are evaluated using 0-1 and top-q balanced error
rates as well as F1 scores. Under the top-q error cost func-
tion, a classification is considered correct if the rank of the
correct label, obtained by sorting all prediction confidences
in non-increasing order, is at most q. On the other hand,
under the balanced error cost function, the penalty of mis-
classifying one sequence is inversely proportional to the num-
ber of sequences in the target class (i.e. mis-classifying a se-
quence from a class with a small number of examples results
in a higher penalty compared to that of mis-classifying a



sequence from a large, well represented class). We evaluate
remote protein homology performance using standard Re-
ceiver Operating Characteristic (ROC) and ROC50 scores.
The ROC50 score is the (normalized) area under the ROC
curve computed for up to 50 false positives. With a small
number of positive test sequences and a large number of
negative test sequences, the ROC50 score is typically more
indicative of the prediction accuracy of a homology detection
method than the ROC score.

4.1 Remote homology detection
For the task of remote homology detection (Table 1), we
compare our proposed 2D string kernel method (using BLO-
SUM rows as feature vectors for individual amino acids,
i.e. 20 × |X| 2D sequence) with a number of state-of-the-
art kernel methods for remote homology including spec-
trum/mismatch kernels [12, 11], spatial sample kernels [9],
semi-supervised cluster kernel [23], as well as state-of-the-
art profile kernel [6]. We also compare with a recently
proposed spectrum-RBF and mismatch-RBR methods [18]
which incorporate physico-chemical descriptors with tradi-
tional spectrum/mismatch kernels. We test both similarity
hashing and direct feature quantization approaches with our
2D string kernels.

As can be seen from results in Table 1, 2D string kernel
provides effective improvements over other string kernel ap-
proaches. For instance, using 2D BLOSUM substitution
profiles with spectrum and mismatch kernels significantly
improves average ROC50 scores from 27.91 and 41.92 to
43.29 and 49.17, respectively (relative improvements of 50%
and 17%). Similar improvements observed when using spa-
tial sample kernel (SSSK) (average ROC50 increases from
50.12 using 1D amino acid sequences to 55.54 using 2D
BLOSUM representation with SSSK kernel, 11% relative
improvement). We also observe that 2D kernel provides
substantial improvements in semi-supervised settings using
semi-supervised cluster kernel [23] and profile kernel ap-
proaches. For example, 2D kernel on sequence profiles used
by the profile kernel (obtained from non-redundant sequence
database (NRDB) [6]) achieves higher average ROC50 score
of 86.27 compared to 81.51 of the profile kernel. We also note
the our 2D string kernel using only BLOSUM substitution
scores achieves higher average ROC50 scores compared to
computationally more expensive spectrum-RBF/mismatch-
RBF approaches [18] which exploit richer descriptors (BLO-
SUM, AAindex descriptors, etc). We also note that using
direct feature quantization provides more effective improve-
ments compared to discrete embedding with similarity hash-
ing.

4.2 Multi-class protein fold prediction
For multi-class protein fold recognition (Table 2, Ding&Dubchack
dataset, 27-folds), using 2D string kernel with BLOSUM
profiles (20×|X|) we observe substantial improvements over
1D mismatch kernel, e.g., balanced error rate improves from
53.2% to 48.5% for mismatch-(k=5,m=1) kernel (9% rela-
tive improvement). We also note that obtained error rates
compare well with the error rates of computationally more
expensive substitution kernel [10] which also uses BLOSUM
substitution scores to measure similarity between k-mers.

On a challenging remote fold recognition dataset [14] (re-

sults in Table 3), we observe similar improvements in rank-
ing quality when using 2D string kernel with BLOSUM pro-
files over corresponding string kernel methods which use 1D
amino acid sequences. For instance, 28.92% top-5 error rate
of the cluster kernel with BLOSUM profile compares well
with 35.28% error rate of the state-of-the-art profile kernel.

4.3 Running time
In Table 4, we compare the running time for the proposed
2D string kernel and traditional string kernel methods. We
note that for mismatch-(k,m) kernel computation (protein
remote homology data) we use linear time sufficient-statistic
based algorithm from [7]. As can be seen from results, us-
ing 2D kernels gives similar performance in running times
compared to traditional 1D kernels while displaying better
classification performance (Table 1).

5. CONCLUSIONS
We presented new 2D kernel methods for biological sequences
represented as ‘sequences of feature vectors (as in biological
sequence profiles, or sequences of amino acid descriptors).
The proposed approach directly exploits these feature se-
quences (2D) to improve sequence classification. On three
protein sequence classification tasks this shows significant
15-20% improvements compared to state-of-the-art sequence
classification methods.
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