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ABSTRACT
Motivation: Establishing structural and functional rela-
tionships between sequences in the presence of only the pri-
mary sequence information is a key task in biological se-
quence analysis. This ability can be critical for tasks such
as making inferences of the structural class of unannotated
proteins when no secondary or tertiary structure is avail-
able. Recent computational methods based on profile and
mismatch neighborhood kernels have significantly improved
one’s ability to elucidate such relationships. However, the
need for additional reduction in computational complexity
and improvement in predictive accuracy hinders the widespread
use of these powerful computational tools.
Results: We present a new general approach for sequence
analysis based on a class of efficient string-based kernels,
sparse spatial sample kernels (SSSK). The approach offers
state-of-the-art accuracy for sequence classification, low com-
putational cost, and scales well with the size of sequence
databases, in both supervised and semi-supervised learning
settings. Application of the proposed methods to a remote
homology detection and a fold recognition problems yields
performance equal to or better than existing state-of-the-art
algorithms. We also demonstrate the benefit of the spatial
information and multi-resolution sampling for achieving this
accuracy and for discriminative sequence motif discovery.
The proposed methods can be applied to very large partially-
labeled databases of protein sequences because of low com-
putational complexity and show substantial improvements
in computing time over the existing methods.
Availability: Supplementary data and Matlab/C codes are
available at http://seqam.rutgers.edu/spatial-kernels/
Contact: vladimir@cs.rutgers.edu

Categories and Subject Descriptors
I.2 [Artificial Intelligence]: Learning; I.5 [Pattern Recog-
nition]: Applications; I.5.2. [Pattern Recognition]: De-
sign Methodology

General Terms

Algorithms, Design, Measurement, Performance, Experimen-
tation

Keywords
sequence classification, large-scale semi-supervised learning,
string kernels

1. INTRODUCTION
Classification of protein sequences into structural or func-
tional classes is a fundamental problem in computational
biology. With the advent of large-scale sequencing tech-
niques, experimental elucidation of an unknown protein se-
quence function becomes an expensive and tedious task.
Currently, there are more than 61 million DNA sequences
in GenBank [3], and approximately 349,480 annotated and
5.3 million unannotated sequences in UNIPROT [2], making
development of computational aids for sequence annotation
a critical and timely task. In this work we focus on pro-
tein sequence classification problems using only the primary
sequence information. While additional sources of informa-
tion, such as the secondary or tertiary structure, may lessen
the burden of establishing the homology, they may often be
unavailable or difficult to acquire for new putative proteins.

Early approaches to computationally-aided homology detec-
tion, such as BLAST [1] and FASTA [22], rely on aligning
the query sequence to a database of known sequences (pair-
wise alignment). Later methods, such as profiles [7] and
profile hidden Markov models (profile HMM) [6], collect ag-
gregate statistics from a group of sequences known to belong
to the same family. Such generative approaches only make
use of positive training examples, while the discriminative
approaches attempt to capture the distinction between dif-
ferent classes by considering both positive and negative ex-
amples. In many sequence analysis tasks, the discriminative
methods such as kernel-based [25] machine learning meth-
ods provide the most accurate results [4, 13, 17, 24]. Several
types of kernels for protein homology detection have been
proposed over the last decade. In [11], Jaakkola et al. pro-
posed SVMFisher, derived from probabilistic models. Leslie
et al. in [17] proposed a class of kernels that operate directly
on strings and derive features from the sequence content.
Both classes of kernels demonstrated improved discrimina-
tive power over methods that operate under generative set-
tings.

Remote homology detection and fold recognition problems
are typically characterized by few positive training sequences



accompanied by a large number of negative training exam-
ples. Lack of positive training examples may lead to sub-
optimal classifier performance, therefore making training set
expansion necessary. However, enlarging the training set
by experimentally labeling the sequences is costly leading
to the need for leveraging unlabeled data to refine the de-
cision boundary. The profile kernel [14] and the mismatch
neighborhood kernel [26] both use large unlabeled datasets
and show significant improvements over the sequence classi-
fiers trained under the supervised setting. Nevertheless, the
promising results can be offset by a significant increase in
computational complexity, thus hindering use of such pow-
erful computational tools on very large sequence data sets.

In this study, we present a general approach for efficient clas-
sification of biological sequences, based on a class of string
kernels, the sparse spatial sampling kernels (SSSK). The pro-
posed method effectively models sequences under complex
biological transformations such as multiple mutations, inser-
tions, and deletions by multi-resolutional sampling. Under
the SSSK, feature matching is independent of the size of the
alphabet set, which ensures low computational cost. Such
characteristics open the possibility of analyzing very large
unlabeled datasets under the semi-supervised setting with
modest computational resources. Compared to the existing
string kernels, the SSSK provide a richer representation for
sequences by explicitly encoding the information on spatial
configuration of features within the sequences, leading to dis-
covery of sequence motifs. The proposed methods perform
better and run substantially faster than existing state-of-
the-art kernel-based algorithms [14, 13, 26].

2. BACKGROUND
In this section, we briefly review previously published state-
of-the-art methods for protein homology detection. We de-
note the alphabet set as Σ in the whole study. Given a se-
quence X the spectrum-k kernel [16] and the mismatch(k,m)
kernel [17] induce the following |Σ|k-dimensional represen-
tation for the sequence:

Φ(X) =

 

X

α∈X

I(α, γ)

!

γ∈Σk

, (1)

where under the spectrum-k kernel, I(α, γ) = 1 if α = γ and
under the mismatch(k,m) kernel, I(α, γ) = 1 if α ∈ N(γ, m),
where N(γ, m) denotes the mutational neighborhood induced
by the k-mer γ for up to m mismatches.

Both the spectrum-k and the mismatch(k,m) kernel directly
extract string features based on the observed sequence, X.
On the other hand, the profile kernel, proposed by Kuang
et al. in [13], builds a profile [7] PX and uses a similar |Σ|k-
dimensional representation, derived from the profile:

Φprofile(k,σ)(X)=

0

@
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i=1···(TPX
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I(PX(i, γ) < σ)

1

A

γ∈Σk

,(2)

where PX(i, γ) denotes the cost of locally aligning the k-
mer γ to the k-length segment starting at the ith position
of PX , σ a pre-defined threshold and TPX

the length of the
profile. Explicit inclusion of the amino acid substitution
process allows both the mismatch and the profile kernels

to significantly outperform the spectrum kernel and demon-
strate state-of-the-art performance under both supervised
and semi-supervised settings [26, 13] for the protein sequence
classification tasks. However, such method of modeling sub-
stitution process induces a k-mer mutational neighborhood
that is exponential in the size of the alphabet set during the
matching step for kernel evaluation; for the mismatch(k,m)
kernel, the size of the induced k-mer neighborhood is km|Σ|m

and for the profile(k,σ) kernel, the maximum size of the
mutational neighborhood is dependent on the threshold pa-
rameter σ and the shape of the profile. Increasing m or σ

to model multiple mutations will incur high complexity for
computing the kernel matrix hence hindering the use of such
powerful tools.

The promising results of the profile kernel shown in [13] rely
on the usage of a large unlabeled sequence database, such as
the non-redundant (NR) data set, for estimation of profiles.
On the other hand, for the mismatch string kernel, Weston
et al. propose to use the sequence neighborhood kernel to
leverage the unlabeled sequences in [26].

2.1 The sequence neighborhood kernel
The sequence neighborhood kernels take advantage of the
unlabeled data using the process of neighborhood induced
regularization. Let Φorig(X) be the original representation
of sequence X. Also, let N(X)1 denote the sequence neigh-
borhood of X (a set of sequences neighboring X). Weston et
al. proposed in [26] to re-represent X using:

Φnew(X) =
1

|N(X)|

X

X′∈N(X)

Φorig(X ′). (3)

Under the new representation, the kernel value between the
two sequences X and Y becomes:

K
nbhd(X, Y ) =

X

X′∈N(X),Y ′∈N(Y )

K(X ′, Y ′)

|N(X)||N(Y )|
. (4)

Note that under such settings, all training and testing se-
quences will assume a new representation, whereas in a tra-
ditional semi-supervised setting, unlabeled data are used
during the training phase only. The authors choose the
mismatch representation for the sequences and show that
the discriminative power of the classifiers improves signifi-
cantly once information regarding the neighborhood of each
sequence is available. Both the profile kernel and the mis-
match neighborhood kernel show very promising results and
demonstrate state-of-the-art performance in various protein
sequence classification tasks. However, the exponential size
of the incurred k-mer mutational neighborhood makes large-
scale semi-supervised learning under the mismatch represen-
tation very computationally demanding.

3. THE SPARSE SPATIAL SAMPLE KER-

NELS
In this section, we present a new class of string kernels, the
sparse spatial sample kernels (SSSK), that effectively model
complex biological transformations (such as highly diverse
mutation, insertion and deletion processes) and can be effi-
ciently computed. The SSSK family of kernels, parametrized

1We will discuss how to construct N(X) in Section 4.1.



by three positive integers, assumes the following form:

K
(t,k,d)(X, Y ) =

X

(a1,d1,...,dt−1,at)

ai∈Σk,0≤di<d

C(a1, d1, · · · , at−1, dt−1, at|X)·
C(a1, d1, · · · , at−1, dt−1, at|Y )

,(5)

where C(a1, d1, · · · , at−1, dt−1, at|X) denotes the number of

times we observe substring a1
d1↔ a2,

d2↔, · · · ,
dt−1
←→ at (a1 sep-

arated by d1 characters from a2, a2 separated by d2 charac-
ters from a3, etc.) in the sequence X. This is illustrated in
Figure 1.

Figure 1: Contiguous k-mer feature α of a tradi-
tional spectrum/mismatch kernel (top) contrasted
with the sparse spatial samples of the proposed ker-
nel (bottom).

The new kernel implements the idea of sampling the se-
quences at different resolutions and comparing the resulting
spectra; similar sequences will have similar spectrum at one
or more resolutions. This takes into account possible muta-
tions, as well as insertions/deletions2. Each sample consists
of t spatially-constrained probes of size k, each of which lie
no more than d positions away from its neighboring probes.
In the proposed kernels, the parameter k controls the indi-
vidual probe size, d controls the locality of the sample, and
t controls the cardinality of the sampling neighborhood. In
this work, we use short samples of size 1 (i.e., k = 1), and
set t to 2 (i.e. features are pairs of monomers) or 3 (i.e.
features are triples.)

The proposed sample string kernels not only take into ac-
count the feature counts (as in the family of spectrum ker-
nels [16, 17] and gapped/subsequence kernels [15]), but also
include spatial configuration information, i.e. how the fea-
tures are positioned in the sequence. This is in contrast
to the gapped or subsequence kernels where such informa-
tion is not present. The spatial information can be critical
in establishing similarity of sequences under complex trans-
formations such as the evolutionary processes in protein se-
quences. The addition of the spatial information experimen-
tally demonstrates very good performance, even with very
short sequence features (i.e. k=1), as we will show in Sec-
tion 4.

The use of short features can also lead to significantly lower
computational complexity of the kernel evaluations. The di-
mensionality of the features induced by the proposed kernel
is |Σ|tdt−1 for our choice of k = 1. As a result, for triple-(1,3)

2We discuss how insertions and deletions are modeled in
Section 5.

(k = 1, t = 3, d = 3) and double-(1,5) (k = 1,t = 2,d = 5)
feature sets, the dimensionalities are 72, 000 and 2, 000, re-
spectively, compared to 3, 200, 000 for the spectrum-(k) [16],
mismatch-(k,m) [17], and profile(k,σ) kernels with the com-
mon choice of k = 5. The low dimensionality of the feature
sets ensures efficient computation. The proposed kernels can
be efficiently computed using sorting and counting. To com-
pute the kernel values, we first extract the features from the
sequences and sort the extracted features in linear time using
counting sort. Finally we count the number of distinct fea-
tures and update the kernel matrix. For N sequences with
the longest length n and u distinct features, computing the
NxN kernel matrix takes linear O(dnN + min(u, dn)N2)
time. Similar to the gapped kernels [15], the complexity
for kernel evaluation is also independent of the size of the
alphabet set. We provide a comprehensive comparison of
the computational complexity and running times with other
kernel methods in Section 5.

3.1 SSSK under Semi-supervised learning set-

ting
The SSSK can also be extended to accommodate unlabeled
data, similar to the approach presented by Weston et al.
in [26]. Under the semi-supervised setting with unlabeled
sequences, direct use of Equation 4 for computation of the
refined kernel values between sequences X and Y requires
|N(X)| × |N(Y )| kernel evaluations, i.e. quadratic running
time in the size of the neighborhood. On the other hand,
use of Equation 3 requires explicit representation of the se-
quences which can be problematic when the dimensionality
of the feature space is high. As a result, performing such
smoothing operation over the mismatch kernel representa-
tion is computationally intensive, as noted in [26, 14].

Equation 3 lends a useful insight into the complexity of the
smoothing operation. For any explicit representation Φ(X),
its smoothed version can be computed in time linear in the
size of the neighborhood |N(X)|, therefore the smoothed
kernel can also be evaluated in time linear in the neighbor-
hood size. However, the smoothed representation in case of
the mismatch kernel cannot be computed explicitly due to
its exponential length. On the other hand, for the proposed
kernels (doubles and triples) the smoothed representations
can be computed explicitly, if desired.

In our experiments, we do not compute the explicit rep-
resentation and instead use implicit computations over in-
duced representations. For each neighborhood N(X), a set
of sequences neighboring X, we first sort the features (e.g.
doubles of characters) and then obtain counts for distinct
features to evaluate the kernel. This leads to a low space
and time complexity for the kernel computations. The pres-
ence of mismatches, however, prevents one from applying
the same approach under the mismatch representation.

4. EXPERIMENTAL RESULTS
We present experimental results for the remote homology de-
tection under the supervised setting on the SCOP dataset
in Section 4.2 and the results for large-scale semi-supervised
homology detection in Section 4.3. In Section 4.4, we com-
pare iterative (PSI-BLAST) and non-iterative (BLAST) meth-
ods for neighborhood construction. Finally, we present ex-



perimental results for remote fold recognition in Section 4.5.

4.1 Settings, parameters and performance mea-

sures
We evaluate all methods using the Receiver Operating Char-
acteristic (ROC) and ROC-50 [8] scores. The ROC-50 score
is the (normalized) area under the ROC curve computed for
up to 50 false positives. With a small number of positive
testing sequences and a large number of negative testing se-
quences, the ROC-50 score is typically more indicative of the
prediction accuracy of a homology detection method than
the ROC score.

In all experiments, we normalize kernel values K(X, Y ) us-
ing

K
′(X, Y ) =

K(X, Y )
p

K(X, X)K(Y, Y )
(6)

to remove the dependency between the kernel value and
the sequence length. To perform our experiments, we use
an existing SVM implementation from a standard machine
learning package SPIDER3 with the default parameters. In
the semi-supervised experiments, we use kernel smoothing
(Equation 4) as in [26]. For each sequence X, to construct
the sequence neighborhood N(X) we query the unlabeled
dataset using 2 iterations of PSI-BLAST and recruit the se-
quences with e-values≤ 0.05 as neighbors of X (i.e. N(X) =
{X ′ : eV alue(X, X ′) ≤ 0.05}). To adhere to the true semi-
supervised setting, we remove all sequences in the unlabeled
datasets that are identical to any test sequence.

For all experiments, we compare with the state-of-the-art
classifiers using the triple(1,3) (k = 1,t = 3,d = 3) and the
double(1,5) (k = 1,t = 2,d = 5) feature sets.

4.2 SCOP Dataset
We use the dataset published in [26] to perform our experi-
ments. The dataset contains 54 target families from SCOP
1.59 [19] with 7, 329 isolated domains. Our experimental
setup is the same as that of Jaakkola [11, 13]. In each of the
54 experiments, to simulate the remote homology problem
one of the families is completely held out for testing (i.e.
the classifiers are tested on the the sequences from unseen
families). Different instances of this dataset have been used
as a gold standard for protein remote homology detection in
various studies [10, 18, 16, 17, 13].

We compare the performance of our proposed methods with
previously published state-of-the-art methods [18, 17] under
the supervised learning setting in Table 1. We also show the
dimensionality of the induced features and the observed ex-
perimental running times, measured on a 2.8GHz CPU, for
constructing the 7329x7329 kernel matrix4. It is clear from
the table that the proposed kernels (doubles and triples)
not only show significantly better performance than existing
methods, but also require substantially less computational
time. Also, as can be seen from the comparison with the

3http://www.kyb.tuebingen.mpg.de/bs/people/spider
4The code used for evaluation of the competing methods has
been highly optimized to perform on par or better than the
published spectrum/mismatch code. We also used the code
provided by the authors of the competing methods.
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Figure 2: Comparison of the performance (ROC50)
in the supervised setting. Spatial kernels (triples
and doubles) outperform other supervised methods.

gapped kernels, the addition of the spatial information sub-
stantially improves the classification performance. We also
show the ROC-50 plot in Figure 2. In the plot, the horizon-
tal axis corresponds to the ROC-50 scores and the vertical
axis denotes the number of experiments, out of 54, with an
equivalent or higher ROC-50 score. For clarity, we do not
display the plot for every method. Our results clearly indi-
cate that both double and triple kernels outperform all other
methods.

Table 1: Comparison of the performance on the
SCOP 1.59 dataset under the supervised setting.
Method ROC ROC50 # dim. Time (s)

(5, 1)-mismatch 0.8749 0.4167 3200000 938
SVM-pairwise† 0.8930 0.4340 - -
gapped(6,2)[15] 0.8296 0.3316 400 55
gapped(7,3) 0.8540 0.3953 8000 297
(1,5) double 0.8901 0.4629 2000 54
(1,3) triple 0.9148 0.5118 72000 112
†: directly quoted from [18]

4.3 Large-Scale semi-supervised experiments
In this section, we perform the semi-supervised experiments
on three unlabeled datasets:the non-redundant (NR) dataset,
Swiss-Prot5, and PDB6. Table 2 summarizes the main char-
acteristics of the unlabeled datasets used in this study. The
second column shows the size of the unlabeled datasets and
the third column shows the mean, median and maximum
number of neighbors per sequence recruited using PSI-BLAST
with the corresponding unlabeled dataset.

We perform all semi-supervised experiments on a 2.8GHz
processor with 2GB of memory. Computation of the mis-
match neighborhood kernels is computationally demanding
and typically cannot be accomplished on a single machine for
anything but relatively small unlabeled datasets. Therefore,

5We use the same version as the one employed in [26] for
comparative analysis of performance.
6As of Dec. 2007.
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Figure 3: In the upper panel, we show the ROC-50 plots of three different features using PDB, Swiss-Prot
and NR databases as unlabeled datasets, respectively. In the lower panel, we show the scatter-plot of ROC-
50 scores of the triple-(1,3) kernel (vertical) and the profile(5,7.5) kernel (horizontal). Any point above the
diagonal line in the figures (d),(e),(f) indicates better performance for the triple-(1,3) kernel.

Table 2: Number of neighboring sequence re-
cruited using PSI-BLAST with various unlabeled
datasets(mean/median/max).

Dataset # Seq # Neighbors

Swiss-Prot 101602 56/28.5/385
PDB 116697 16/5/334
NR 534936 114/86/490

the results for the mismatch neighborhood kernel can only
be shown using the previously published summary statis-
tics [26] on Swiss-Prot, a moderately populated sequence
database. In the upper panel of Figure 3, we show the ROC-
50 plots of the double-(1,5) neighborhood, triple-(1,3) neigh-
borhood, and profile(5,7.5) kernels using PDB (first col-
umn), Swiss-Prot (second column), and NR (third column)
sequence databases as the unlabeled datasets. The ROC-50
curves of the triple-(1,3) neighborhood kernel on all unla-
beled datasets consistently outperform the other two kernels.
Furthermore, the performance of the double-(1,5) neighbor-
hood kernel is on par with that of the profile(5,7.5) kernel.
In the lower panel, we show the scatterplots of the ROC-50
scores of the triple-(1,3) kernel and the profile(5,7.5) ker-
nel. Any point falling above the diagonal line in the figures
indicates better performance of the triple-(1,3) kernel over

Table 3: Statistical significance (p-values of the
Wilcoxon signed rank test) of the observed differ-
ences between pairs of methods (ROC-50 scores) on
unlabeled datasets. Triple denotes the triple-(1,3)
neighborhood kernel, double denotes the double-
(1,5) neighborhood kernel, mismatch denotes the
mismatch(5,1) neighborhood kernel, and profile de-
notes the profile(5,7.5) kernel.

PDB
double triple profile

double - 1.017e-01 4.762e-02
triple 1.017e-01 - 7.666e-06
profile 4.762e-02 7.666e-06 -

Swiss-Prot
double triple profile

double - 9.242e-05 4.992e-01
triple 9.242e-05 - 2.419e-04
profile 4.992e-01 2.419e-04 -

NR
double triple profile

double - 8.782e-06 9.762e-01
triple 8.782e-06 - 7.017e-06
profile 9.762e-01 7.017e-06 -



Table 4: The overall prediction performance of all
compared methods over various unlabeled datasets.

PDB ROC ROC50
double-(1,5) neighborhood .9599 .7466
triple-(1,3) neighborhood .9717 .8240
profile(5,7.5) .9511 .7205

Swiss-Prot
double-(1,5) neighborhood .9582 .7701
triple-(1,3) neighborhood .9732 .8605
profile(5,7.5) .9709 .7914
mismatch nbhd† .955 .810

NR
double-(1,5) neighborhood .9720 .8076
triple-(1,3) neighborhood .9861 .8944
profile(5,7.5)-2 iterations .9734 .8151
profile(5,7.5)-5 iterations‡ .984 .874
profile(5,7.5)-5 iter. with
secondary structure‡

.989 .883

†:directly quoted from [26]
‡:directly quoted from [14]

the profile(5,7.5) kernel. As can be seen from these plots,
the triple kernel outperforms the profile kernel on all three
datasets (43/37/34 wins and 4/5/10 ties on PDB, Swiss-
Prot, and NR datasets, respectively).

We also show the statistical significance of the observed
differences between pairs of methods on various unlabeled
datasets in Table 3. All the entries in the table are the p-
values of the Wilcoxon signed rank test using the ROC-50
scores. For each unlabeled dataset, we highlight the method
that has the best overall performance. The triple-(1,3) ker-
nel consistently outperforms all other kernels, with high sta-
tistical significance.

Finally, we show the overall prediction performance of all
compared methods over various unlabeled datasets in Ta-
ble 4. For each unlabeled dataset, we highlight the best ROC
and ROC-50 scores; on all datasets, the triple-(1,3) neigh-
borhood kernel achieves the best performance. Furthermore,
we achieve such performance by only 2 PSI-BLAST iter-
ations. For example, the triple-(1,3) neighborhood kernel
with 2 PSI-BLAST iterations outperforms the profile(5,7.5)
kernel with 5 PSI-BLAST iterations. We also note that
the performance of our kernels is achieved using primary
sequence information only. However, as shown in the table,
the triple-(1,3) kernel still outperforms the profile(5,7.5) ker-
nel with the added secondary structure information. Such
higher order information (e.g. secondary structure), if avail-
able and desirable, can be easily included in our feature set.

4.4 Non-iterative neighborhood construction
Performing the iterative search using PSI-BLAST for neigh-
borhood construction is computationally demanding and con-
sumes large portion of the overall running time of the meth-
ods. In this section, we present the results obtained using
BLAST search only. The use of BLAST only requires a sin-
gle pass over the unlabeled sequence database and therefore
requires substantially less computational time and resources
compared to the iterative multi-pass PSI-BLAST search.

Table 5: Comparison of performance using iterative
(PSI-BLAST) and non-iterative (BLAST) sequence
neighborhood construction procedures. The perfor-
mance is measured using the triple(1,3) feature set.

Data set
PSI-BLAST BLAST

ROC ROC50 ROC ROC50
#neighbors
with BLAST

PDB 0.9691 0.8240 0.9557 0.7535 6/3/95
Swiss-Prot 0.9732 0.8605 0.9640 0.8144 16/9/177
NR 0.9861 0.8944 0.9787 0.8647 40/23/232

We use the same threshold on e-value (≤ .05) to recruit the
neighboring sequences to form the neighborhood sets N(X),
for each query sequence X. We compare the performance
of the classifiers estimated using iterative (PSI-BLAST) and
non-iterative (BLAST) sequence neighborhood construction
in Table 5. First, we observe that, as the size of the un-
labeled sequence database increases, the margins between
the performance of the iterative and non-iterative sequence
neighborhood construction procedures narrows. Second, we
observe that, using only BLAST, the triple(1,3) neighbor-
hood kernel already outperforms the profile(5,7.5) kernel,
constructed with 2 PSI-BLAST iterations, and also shows
comparable performance with the profile(5,7.5) kernel, con-
structed with 5 PSI-BLAST iterations on the non-redundant
data set (Table 4). Finally, compared with the number of
neighbors recruited using PSI-BLAST in Table 2, we observe
a three-fold reduction when using non-iterative (BLAST)
neighborhood construction procedure. Such reduction in
neighborhood size enables faster training and classification
as well as reduces storage requirements for the support vec-
tors.

4.5 Preliminary results for fold prediction
For the fold recognition task, we use a challenging dataset
designed by Ding et al. 7 in [5], used as a benchmark in
many studies. The data set contains sequences from 27 folds
divided into two independent sets, such that the training and
test sequences share less than 35% sequence identities and
within the training set, no sequences share more than 40%
sequence identities.

We compare the performance of our methods under super-
vised and semi-supervised settings with previously published
methods on Ding and Dubchak benchmark data set in Ta-
ble 6. As can be seen from the table, our spatial kernels
achieve higher overall performance compared to the state-
of-the-art classifiers.

5. DISCUSSION
We next compare our family of kernels with other kernel
methods and discuss computational aspects of the methods.
We also demonstrate how our method discovers discrimina-
tive short sequence motifs.

5.1 Complexity Comparison
We first compare computational complexity of the methods
in Table 7 and show the observed running times. Run-
ning time measurements for our methods are done on a

7http://ranger.uta.edu/∼chqding/bioinfo.html



Table 6: Comparison on Ding and Dubchak benchmark data set

Method Error
Top 5
Error

Balanced
Error

Top 5
Balanced
Error

Recall
Top 5
Recall

Precision
Top 5
Precision

F1
Top5
F1

Supervised
SVM(D&D)† - - 56.5 - - - - - - -
Mismatch(5,1) 51.17 22.72 53.22 28.86 46.78 71.14 90.52 95.25 61.68 81.45
Double(1,5) 44.13 23.50 46.19 23.92 53.81 76.18 61.90 79.85 57.57 77.97
Triple (1,3) 41.51 18.54 44.99 21.09 55.01 78.91 80.42 89.19 65.33 83.74
Semi-supervised (Non-redundant data set)
Profile(5,7.5) 31.85 15.14 32.17 16.73 67.83 83.27 89.49 94.9 77.16 88.71
Double(1,5) 28.72 14.99 24.74 11.6 75.26 88.4 76.02 86.86 75.63 87.62
Triple(1,3) 24.28 12.79 22.38 11.79 77.62 88.21 84.02 91.45 80.69 89.8
Profile NR(Perceptron)‡ - - 26.5 - - - - - - -
All measures are presented as percentages.
†: quoted from [5]; ‡: quoted from [21]

2.8GHz CPU. For supervised experiments, we compute the
full 7329x7329 kernel matrix for all methods. For the semi-
supervised setting (neighborhood kernels), we report aver-
age running time on the datasets used (i.e. PDB, Swiss-Prot,
and non-redundant (NR) databases.) Both the mismatch
neighborhood and the profile kernels have higher complex-
ity compared to the sample kernels due to the exponential
neighborhood size. The cardinalities of the mismatch and
profile neighborhoods are O(km|Σ|m), where k ≥ 5, and
|Σ| = 20, compared to a much smaller feature space size of
dt−1|Σ|t for the sample kernels, where t is 2 or 3, and d is 3 or
5, respectively. This complexity difference leads to order-of-
magnitude improvements in the running times of the sample
kernels over the mismatch and profile kernels. The difference
is even more pronounced when kernel smoothing is used un-
der a semi-supervised setting. The neighborhood mismatch
kernel becomes substantially more expensive to compute for
large datasets as indicated in [14, 26] by Weston et al. .

Table 7: Complexity of computations.

Method Time complexity
Running
time (s)

Supervised setting

Triple kernel O(d2nN + d2|Σ|3N2) 112
Double kernel O(dnN + d|Σ|2N2) 54
Mismatch O(km+1|Σ|mnN + |Σ|kN2) 948
Gapped kernel O(

`

g

k

´

knN + |Σ|kN2) 176
Semi-supervised setting

Triple kernel O(d2HnN + d2|Σ|3N2) 327
Double kernel O(dHnN + d|Σ|2N2) 67
Mismatch O(km+1|Σ|mHnN + |Σk|N2) -
Profile kernel O(kMσnN + |Σ|kN2) 10 hours†

†
the running time is quoted from [14]

Notations used in the table: N-number of sequences,
n-sequence length,
H is the sequence neighborhood size,
|Σ| is the alphabet size
k, m are mismatch kernel parameters (k = 5, 6 and
m = 1, 2 in most cases)

Mσ is the profile neighborhood size, Mσ ≤ |Σk|

In previous studies [14, 26], to achieve good accuracy the
number of the PSI-BLAST iterations needs to be at least 5,

while our performance is achieved with only 2 iterations. We
also note that the results reported in [23] are not directly
comparable since an older SCOP 1.53 benchmark is used
and the results are optimized on testing sequences; also,
the obtained similarity measures in the corresponding study
do not satisfy positive semi-definiteness condition (are not
Mercer kernels).

5.2 Biological motivation
The feature sets induced by our kernels cover segments of
variable length (e.g., 2−6 residues in the case of the double-
(1, 5) kernel). On the other hand, the mismatch and profile
kernels cover segments of fixed length (e.g., 5 or 6 residues
long) as illustrated in Figure 1. Sampling at different reso-
lutions also allows one to capture similarity in the presence
of more complex substitution, insertion, and deletion pro-
cesses, whereas sampling at a fixed resolution, the approach
used in mismatch and spectrum kernels, limits the sensitiv-
ity in the case of multiple insertions/deletions or substitu-
tions. Increasing the parameter m (number of mismatches
allowed) to accommodate the multiple substitutions, in the
case of mismatch/spectrum kernels, leads to an exponential
growth in the neighborhood size, and results in high com-
putational complexity.

The proposed features also capture short-term dependen-
cies and interactions between local sequence features by ex-
plicitly encoding the spatial information. In contrast, such
information is not present in the gapped/subsequence ker-
nels [15, 20]. In a weighted version of the subsequence kernel,
where each instance (subsequence) of a particular k-mer is
weighted inversely proportional to the length of the subse-
quence, the count for a particular k-mer is the sum of such
weights. When sequences are matched under the weighted
subsequence kernel, the final counts (the sum of weights) are
compared and no distinction is made as to how the features
were positioned in the sequences, i.e. the information on the
spatial configuration of the features within the sequence is
not retained.

We further illustrate differences between the proposed ker-
nels and gapped/subsequence kernels for the case when the
basic features (individual samples) of the spatial sample ker-
nels are single characters in Equations 7 (spatial kernels)
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Figure 4: The schematic representation of the
short-chain scorpion toxins family (obtained from
PROSITE)

and 8 (gapped/subsequence kernels) below:

K(X, Y ) =
X

(a1,...,at)

ai∈Σ

X

(d1,...,dt−1)

0≤di<d

c((a1, d1, . . . , dt−1, at)|X)·
c((a1, d1, . . . , dt−1, at)|Y )

(7)

Kg(X, Y ) =
X

(a1,a2,...,at)

“

X

d1,d2,...,dt−1

c((a1,d1,...,dt−1,at)|X)

”

·

“

X

d1,d2,...,dt−1

c((a1,d1,...,dt−1,at)|Y )

” (8)

where c(·|X) is the (weighted) count and
Pt−1

i=1 di = g−t for
the gapped (g, t) kernels. Note that the spatial configuration
information is integrated out in the gapped/subsequence
kernels, but still maintained in SSSK.

5.3 Discovering short sequence motifs with spa-

tial information
Previous biological studies (e.g. [12]) suggested that the spa-
tial information such as distances between some conserved
key positions can play a key role in capturing inherent char-
acteristics of superfamilies. Our method indirectly identi-
fies meaningful features in the protein data using the Scor-
pion toxin-like superfamily as an example. Several families
in this superfamily are characterized by a number of disul-
phide bridges formed by conserved cysteine (C) residues.
The relative positions (distances) of some neighboring key
residues are also conserved as shown in Figure 4 (obtained
from PROSITE [9]) for the short-chain scorpion toxin fam-
ily. In the experiment, this family is held out for testing
and all other families under the superfamily are used for
training (16 positive training sequences). Among the pos-
itive sequences, 16 are selected as positive support vectors
and 88 out of 1067 negative sequences are selected as nega-
tive support vectors. Under the double(1,5) representation,
the pattern ’C C’ (3 residues between the two conserved
cysteines residues) has the highest weight, consistent with
the schematic representation shown in Figure 4. This fea-
ture is present in all positive support vectors, with the aver-
age count of 1.81 and in the negative support vectors with
the average count of 0.43. The corresponding feature ’CC’
under the gapped(2,4) representation has been suppressed
(ranked 38 out of 400 features) due to over-representation
of such feature in the negative support vectors: 39 out of
43 negative support vectors contain the feature, compared
to 25 out of 88 negative support vectors with the similar
feature using the double kernel. Integrating out the spatial
information suppresses such feature due to its presence in
the negative sequences (the average counts in the positive

and negative support vectors are very close: 8.33 and 7.61).
Lack of spatial information also leads to lower performance
for the gapped kernel: the ROC50 score for the gapped ker-
nel is 28.35, compared to 76.61 for the double kernel.

6. CONCLUSION
We present a computationally efficient approach for pro-
tein sequence analysis that scales well with very large se-
quence databases and shows state-of-the-art performance on
two difficult tasks in protein sequence classification: remote
homology detection and remote fold recognition. The key
component of the method is the spatially-constrained sam-
ple kernel for efficient sequence comparison, which, when
combined with kernel smoothing using unlabeled sequence
databases, leads to rapid and accurate semi-supervised re-
mote homology detection and fold recognition. The pro-
posed methodology can be readily applied to other challeng-
ing problems in biological sequence analysis such as motif
elucidation, ranking and clustering.
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