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ABSTRACT 

Summary: We implemented HIPPIE (High-throughput Identification 
Pipeline for Promoter Interacting Enhancer elements) to streamline 
the workflow from mapping raw Hi-C reads, identifying DNA–DNA 
interacting fragments with high confidence and quality control, detect-
ing histone modifications and DNase hypersensitive enrichments in 
putative enhancer elements, to ultimately extracting possible intra- 
and inter-chromosomal enhancer–target gene relationships.  
Availability: This software package is designed to run on high-
performance computing clusters with Oracle Grid Engine (OGE). The 
source code is freely available under the MIT license for academic 
and nonprofit use. The source code and instructions are available at 
the Wang lab website (http://wanglab.pcbi.upenn.edu/hippie/). It is 
also provided as an Amazon Machine Image to be used directly on 
Amazon Cloud with minimal installation. 
Contact: lswang@mail.med.upenn.edu or bdgregor@sas.upenn.edu 

1 INTRODUCTION  
Genome-wide chromosome conformation capture (Hi-C) has 

been utilized to reveal three-dimensional connectivity of chromatin 

regions in eukaryotic nuclei (Lieberman-Aiden et al., 2009). Due to 

its capability to capture all possible chromatin interactions in a ge-

nome, it has been recently employed to observe long-range regula-

tory elements with their geographically proximal target gene pro-

moters (Hwang et al., 2013). Although there have been workflows 

successfully expediting the analysis of one-dimensional high-

throughput sequencing results such as whole-exome sequencing, 

ChIP-seq, DNase-seq, and RNA-seq; there are limited tools to un-

tangle two-dimensional DNA–DNA physical interactions using Hi-

C datasets. In an effort to reduce the obstacle of processing these 

large-scale datasets, and to establish an analysis protocol to detect 

candidate long-range regulatory elements, we implemented an au-

tomated workflow that processes Hi-C results starting from read 

mapping with quality controls, and corrects for biases in interac-

tions based on the linear distance, mappability, GC content, and 

fragment lengths of each pair of Hi-C reads. This pipeline identifies 

candidate promoter-interacting enhancer elements by integrating 

Hi-C results with epigenomics data such as histone modifications 

and DNase hypersensitivity sites. 

2 METHODS 

  
*To whom correspondence should be addressed: 

lswang@mail.med.upenn.edu, bdgregor@sas.upenn.edu. 

HIPPIE takes Hi-C raw reads as the input and generates a list of 

enhancers with their interacting target gene(s) as the output. We 

built HIPPIE with five step-wise phases (Figure 1): (I) read map-

ping, (II) quality control, (III) identification of significant DNA–

DNA interacting regions, (IV) enhancer–target gene predictions, 

and (V) characterization of these long-range interactions. Although 

HIPPIE is streamlined and automated, each phase of HIPPIE can be 

independently called with commonly used file formats generated by 

different platforms and programs, such as FASTQ, SAM, BAM, or 

BED. Thus, it can readily be combined with other upstream pro-

cessing and/or downstream analyses. The implementations of each 

phase are described below. 

 

 
Fig. 1. An overview of HIPPIE. 

 

Read mapping in HIPPIE uses the sequence alignment package 

BWA (Li and Durbin, 2009). It takes raw Hi-C paired-end sequenc-

ing reads in FASTQ format as input, and applies SAMtools (Li et 

al., 2009) to compress the read alignment SAM files to BAM files 

and produces mapping quality metrics. The quality control steps 

discard reads not passing a user-defined mapping quality criterion 

(default minimum quality score = 30), remove potential PCR dupli-

cates, ignore mitochondrial sequences, and exclude random contigs. 

Identification of interacting DNA fragments consists of calling 

significant Hi-C peaks and annotating their genomic features. Be-

cause the resolution of Hi-C is constrained by the length distribution 

of the fragments produced by the chosen restriction enzyme (the 

sequence between two consecutive restriction sites along the ge-

nomic DNA), we retained the restriction fragments that harbor sig-

nificantly higher specific than nonspecific read coverage (Supple-

mentary Material) as “Hi-C peaks”. Next, we applied BEDtools 

(Quinlan and Hall, 2010) to annotate these peaks with genetic fea-

tures downloaded from the UCSC Genome Browser (Karolchik et 

al., 2014), including annotations for promoters, exons, introns, other 

functional RNAs, etc.  

Enhancer–target gene prediction reveals the interactions of the 

annotated peaks, and produces a list of candidate enhancer elements 
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(CEEs) and the gene(s) with which they interact as supported by Hi-

C reads. To correct for Hi-C experimental biases in their linear dis-

tance between restriction fragments, GC content, mappability and 

length reported in (Yaffe and Tanay, 2011), we implemented the 

algorithm introduced by (Jin et al., 2013) and extracted statistically 

significant DNA–DNA interactions (p-value ≤ 0.1, negative bino-

mial distribution test). For enhancer prediction, our pipeline selects 

Hi-C peaks that interact with a promoter, reside in a DNase hyper-

sensitive region, as well as harbor high levels of enhancer-

associated histone modifications (H3K27ac or H3K4me1) but not 

promoter-associated marks or repressive marks (H3K4me3 and 

H3K27me3). An option of using ENCODE genome segmentations 

(Hoffman et al., 2013) for candidate enhancers is also provided. 

This step is followed by characterization of enhancer–promoter 

interactions, which summarizes the overall properties of the interac-

tions such as their linear distance distribution, as well as reports the 

enrichment of specific histone modifications and GWAS single 

nucleotide polymorphisms (SNPs) within the CEEs. 

Note the phases are not only streamlined with error control, but 

also modularized for individual calls. For instance, users can map 

their Hi-C reads with other algorithms, and call peaks with HIPPIE 

starting at phase III; or one can directly import the interaction re-

gions and utilize HIPPIE for enhancer–target gene identifications 

(phase IV).  

3 USING HIPPIE  
HIPPIE was built specifically for long-range enhancer–gene pair 

interaction detection upon the architecture of our previous DNA 

sequencing workflow (Lin et al., 2013). For instance, we imple-

mented job dependencies and error checking to automate the entire 

process. To run HIPPIE, users first prepare a configuration file de-

scribing the software and data paths, as well as their Hi-C library 

information. For each library, HIPPIE generates a corresponding 

bash script for Oracle Grid Engine job submission commands that 

can be invoked at the command line. When errors occur, all follow-

ing jobs will be held for users to troubleshoot and re-execute the 

stalled phase or step. This modular architecture reduces the poten-

tial for unnecessary, repeated jobs. A complete run of HIPPIE pro-

duces candidate enhancer elements (CEEs) in BED format that are 

annotated with their target gene symbol(s), together with Hi-C read 

count supporting the interaction and interaction p-values. 

   To run HIPPIE, users can either install the package on their own 

cluster system, or simply access a pre-created Amazon Machine 

Image (AMI) from Amazon Web Services (AWS) on an Elastic 

Compute Cloud (EC2) instance (AMI ID: ami-3b0fb252).  

We evaluated HIPPIE on our cluster using publicly available Hi-

C datasets (Dixon et al., 2012). These datasets are 36 and 100 base 

pair (bp) paired-end sequencing with a total of 59.4 giga bases (1.35 

billion single reads) from the Illumina GA II platform (GEO acces-

sions GSM862723 and GSM892306). The total CPU time required 

for HIPPIE to process these datasets is 437.26 core-hours. The 

break-down of CPU time for each phase is as follows: read map-

ping: 64.4%, quality control: 5.8%, identification of peaks: 26.8%, 

enhancer–target gene interaction prediction: 2.8%, and characteriza-

tion: 0.1%. The maximum memory usage is 4.77G for read map-

ping. We identified 3,707 candidate enhancer elements with 3,190 

targeted RefSeq genes. 

4 COMPARISON WITH OTHER TOOLS 
While there are publicly available pipelines for processing Hi-C 

reads, there are no open-source software packages that take raw 

reads as input and ultimately identify enhancer–target gene pairs 

along with their interaction characteristics (Table 1). Among them, 

Hicpipe takes mapped reads and corrects the contact maps based on 

possible experimental biases (Yaffe and Tanay, 2011). HiC-

inspector aligns reads and generates a contact matrix with user-

defined read densities but does not have statistical filtering steps for 

the identified fragments (https://github.com/HiC-inspector). HiCUP 

maps reads with filtering out artifacts and self-interacting reads 

without any statistical model (http://www.bioinformatics.babraham.

ac.uk/projects/hicup/). None of those identify long-range regulatory 

elements; nor provide error checking. 

Table 1. Comparison among Hi-C processing pipelines 

 HIPPIE HiCUP HiC-inspector hicpipe 

DNA – DNA Interactions     

Mapping algorithm BWA Bowtie Bowtie - 

PCR artifacts filtering ✓ ✓ - - 

Restriction Fragment size 
Exact 

size 
- 

User-defined 

max. size 

Bias  

correction 

User-defined threshold for 

peak calling 
✓ - - ✓ 

GC-content normalization ✓ - - ✓ 

Enhancer–target gene 

prediction 
    

Epigenomics Annotation ✓ - - - 

Enhancer–target distance ✓ - - - 

Enhancer GWAS enrichment ✓ - - - 

Enhancer histone modifica-

tion enrichment 
✓ - - - 
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