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Problem definition

• Problem: species-level classification and
identification of organisms based on sequence
data

• We follow DNA-based approach to species
identification: we examine nucleotide sequence of
a given sample to determine its species identity

• Intuition behind genomic approaches to
classification of species: exploit diversity among
DNA sequences to identify organisms

• Motivation: transfer existing knowledge, reliable
automatic and cost-effective bioidentification
systems
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Membership problem

• Given a new sequence, can we place it in its
correct position within an existing hierarchy?
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• Want to assign any unidentified organism to some
taxonomic group: phylum, class, order, family,
genus, species
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DNA barcoding

• uses information from a standard gene region
common across all taxa: in particular,
mitochondrial genome of animals has been
identified as a target for analysis

• DNA barcode is a short fragment of DNA obtained
from the standard region and is used as a marker
for identification and classification of the species

• Examples of markers: mitochondrial genes that
encode ribosomal DNA, COI (cytochrome c
oxidase I) gene, etc.
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DNA barcoding

• Advantages of DNA barcodes: standardization,
eases exchange of data, ability to continually add in
more species and integrate data collected from
different sources

• Problems that needs to be solved:
• Accuracy of identification
• Scalability of methods
• Biological interpretability of the obtained models
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Species recognition problem

Species identification problem definition:
• Given:

• an unlabeled sample (specimen) X

• a set SP of known species represented by their reference barcode
sequences or models

• Want:
• assign the given sample to one of the known species (or decide that this

sample does not belong to any of the known categories).

• Our approach: we solve this global multiclass problem by dividing it into a
collection of binary membership problems:
• In a binary membership problem, the task is to decide whether an input

sequence belongs to a particular class.
• To solve each membership problem we build a binary classifier.
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Discriminative approach

When we build binary classifiers for each of the target
taxonomic group (one-vs-others), we adopt discriminative
approach to the task of sequence classification

• sequences are seen as a set of labeled examples
• positive if they are in the taxonomic group
• negative otherwise

In discriminative approach one tries to learn decision
boundary between positive and negative examples
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Discriminative approach
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How do we learn these classifiers?
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Kernel methods

Kernel-based classification methods
• a general paradigm for the design of classifiers

with well studied theoretical properties
• relies on the existence of positive-definite kernels,

defined as inner products in feature spaces, that
naturally induce similarity metrics among data points

Examples of kernels used: string kernels, Fisher
kernels, etc.
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Kernel functions

every data point in the input space (e.g. sequence) is
mapped into high-dimensional space called feature
space via some transformation Φ : x → φ(x)
the inner product K(xi, xj) =< φ(xi), φ(xj) > called
kernel
Φ is called the feature map (mapping function).
In general, a kernel function is some function that
corresponds to an inner product in some feature
space.
Examples of typical kernel functions: RBF

exp(− (xi−xj)
2

2σ
), polynomial (xixj + 1)d, etc.

Other types of kernels: string kernels, Fisher kernels,
etc.
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String kernels

• String kernels compare sequences by the
substrings they contain

• Examples of string kernels: exact spectrum kernel,
mismatch kernel, and profile kernel

• all the string kernels have general form of

k(x, y) =
∑

i

φi(x)φi(y)

where φi(x), i = 1...|Φ(x)| are components of the
feature vector Φ(x) that defines mapping of the
input string x to the feature space
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The k-spectrum of a sequence

The k-spectrum of a sequence is the set of all k-length
(contiguous, k ≥ 1) subsequences that it contains. We
refer to such a k-length subsequence as a k-mer

Dimension of k-mer feature space is |Σ|k, where |Σ| is
the size of alphabet:

• |Σ| = 4 for the DNA alphabet
• |Σ| = 20 for the alphabet of amino acids

• Example: 2-spectrum of sequence ACGT is {AC,
CG, GT}
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The feature map (mapping function)
of spectrum kernel

k-spectrum mapping function Φk for sequence x:
Φk(x) : x → [(φa(x))]∀a∈Σk

where φa(x) = number of times a occurs in x

Example: sequence ACCGT for k = 3 maps to
43 = 64-dimensional vector:
Φ3(ACCGT) = [AAA/0, AAC/0, ... , ACC/1, ...., CCG/1,
..., CGT/1, ...., TTT/0]
Note: sequence x is mapped to a vector with each
element indicating number of occurrences of some
k-long subsequence in x. Note: exact match only, no
mismatches are allowed, hence projection is based on
explicit features only
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k-spectrum kernel

k-spectrum kernel Kk(x, y) for two sequences x and y is
obtained by taking the inner product in feature space:
Kk(x, y) =< Φk(x),Φk(y) >

This kernel counts the occurrences of k-length
subsequences for each of the sequence in
consideration
This kernel gives a simple notion of sequence
similarity:
two sequences will have a large k-spectrum kernel
value if they have many of the k-mers in common
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(k,m)-mismatch kernel

Additional parameter m of mismatch kernel specifies
upper bound on number of mismatches that is allowed
in the counting of occurrences
Mapping function is defined first for k-mer a as:
Φ(k,m)(a) = (φb(a))b∈Σk

φb(a) = 1 if b is within m mismatches from a, and 0
otherwise.
Example: (k,m)-mismatch neighborhood of a = ACG
Neighborhood(ACG) = {ACA, ACC, ACT, ..., TCG}
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(k,m)-mismatch kernel

Mapping function for the sequence x is then defined
as a sum over mappings of all k-mers in x:
Φ(x) =

∑

k-mers a in x(Φ(k,m)(a))

(k,m)-mismatch kernel Kk,m(x, y) is again an inner
product of two vectors in the feature space:
Kk,m(x, y) =< Φk,m(x),Φk,m(y) >

Note: projection involves now not only explicit
features, but also implicit features from the mismatch
neighborhood
Note: now we take into into account possibility of
substitutions that naturally occur during evolution
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Support Vector Machine (SVM)
Classifier

Linear classifier defined in feature space:
f(x) =< w,Φ(x) > +b =

∑

αiK(x, xi) + b

where w is a linear combination of support vectors, a
subset of the training vectors: w =

∑

αixi

We want to define a mapping function from space of
DNA sequences to vector space.
Our goals at this step:

• computational efficiency of training and
classification

• find near perfect kernel function s.t. sequences
from the same taxonomic group after mapping
form distinct group(s) in the feature space,
whereas different taxonomic groups at the same
time are well apart from each other
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Kernel-based species identification
method

We use the kernel-based formalism to design of
classifiers for binary species identification.
Given a training set of species barcodes SP and their
corresponding species labels S, a sequence kernel is
used in a SVM setting to learn a species classifier for
new sequences:

species(x = s) =

{

yes,
∑

i∈M αi,sks(x, xi) > 0

no, otherwise

where αi,s and M ⊆ SP are estimated in the learning
process using standard SVM methods.
A critical point in this formalism, when applied to the
domain of sequences, is the complexity of kernel
computations
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Efficient computation of kernel matrix using divide-and-conquer

technique

Basic idea:
• cluster combined k-spectrum feature set S =

⋃N
i=1 Spectrum(xi) and naturally find groups of

features that are (k,m)-neighbors. Each cluster in
the resulting partition of the combined spectrum
will correspond to some particular k-mer.

• size of the resulting clusters (subclusters that
correspond to different input strings) gives desired
counts of number of times features occur in the
input strings
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Divide-and-conquer technique

• Divide step: set S of k-spectrum features
composed of all k-mers extracted from N input
sequences is partitioned into subsets S1, . . . , S|Σ|

using character-based clustering
• Conquer step: The same procedure (Divide step)

is applied to each of the obtained subsets
recursively. At depth k of the recursion tree kernel
matrix is updated at each node according to the
contribution of the node feature f :
K(updf , updf ) = K(updf , updf ) + cT

f cf where
updf = {i : f ∈ xi} and cf = [numf (xi)]i∈updf

is a
vector of feature counts.
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Complexity analysis

Complexity of kernel matrix computations:
• Input parameters:

• number of sequences N

• typical sequence length n

• size of the alphabet |Σ|
• Kernel parameters:

• k for spectrum kernel
• (k, m) for mismatch kernel
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Time and space complexity of kernel
computations

Let cK be the complexity of kernel computations for
two sequences x and y

Two main approaches to compute kernel matrices:

• compute each element k(xi, xj) separately:
complexity of this method is then N 2 · cK

• compute the entire matrix through series of its
updates:
• for each unique feature (k-mer) one update is performed

• number of updates u = number of unique features (k-mers) in the combined
spectrum of all N sequences

• complexity of updating is then u · N2 since each update affects the entire
matrix in the worst case

• set of unique features can be found in linear time O(nN)
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Time and space complexity of kernel
computations

Spectrum kernel matrix computation:
Brute force method: O((kn + n2)N2) time and
O(|Σk| + nN) space
Suffix trees: O(knN2 + nN2) and O(kn + nN) space
Bucket sort: Θ(knN + uN2) time and Θ(nN) space
Divide-and-conquer: Θ(knN + uN 2) and Θ(knN) space
Bottom line: No need in suffix trees! Benefits: simple
and efficient implementation, no large time constants
and memory requirements usually associated with
suffix tree construction algorithms (e.g.., Ukkonen
algorithm), scalable, online algorithms with minimal
memory requirements
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Time and space complexity of kernel
computations

• Mismatch kernel matrix using incremental mismatch
kernel algorithm:
T (n,N, k,m) = u ·

∑k
l=1

∑min(m,l)
i=0

(

l
i

)

(Σ − 1)i + u · N2

• Complexity of mismatch kernel computation (for
small m � k) can be expressed as
O(ukm+1|Σ|m + uN2)
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Bounds on string kernels algorithms

• Previously known bounds:
• mismatch kernel matrix computation:

O(nkm+1|Σ|mN2)

• spectrum kernel matrix computation:
O(knN2 + nN2)

• New bounds:
Time Space

spectrum kernel matrix O(knN + uN 2) O(nN)

mismatch kernel matrix O(ukm+1|Σ|m + uN 2) O(nN)

spectrum kernel O(kn + u) O(n)

mismatch kernel O(ukm+1|Σ|m + u) O(n)
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Feature selection

Can we do better (i.e. reduce computational cost
further)? Can we select small number of features
while preserving accuracy of identification?
Two main approaches to feature selection:

• Feature filtering methods:

• use train data statistics to score features, then
select "top" features

• Wrapper methods:

• train classifier, eliminate features with small weights

• repeat previous two steps until target number of
features remained

Note: wrapper methods is not suitable when features do not have individual weights
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Feature selection criteria

Objective: select most informative features, minimizing
their number while preserving prediction accuracy
Compute score for each feature (k-mer) a as:
score(a) = number of occurrences in class

number of occurrences in all classes

and select top n features (k-mers)
Note: suitable for imbalanced data sets when number
of positive and negative examples differs significantly
Note: similar to mutual information when prior is
uniform
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Feature selection criteria

Intuition: when we select features, we want to know
how much of uncertainty regarding sequence
membership is removed after seeing some particular
feature: will it help us to consider this feature? if yes,
then what is the amount of information we gain from
looking at this sequence feature?
Mathematically, mutual information
MI(Feature, Class) = H(Class) − H(Class|Feature)
MI(Feature, Class) = 0 when observing a feature does
not give us any new information (feature and class are
independent, H(Class|Feature) = H(Class))
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String kernels with feature selection

Bounds for string kernel algorithms with feature
selection:

• brute force algorithms: O(|F |(knN + N 2))

• our framework:
• spectrum kernel with feature selection:

O(knN + |F |N2) time
• mismatch kernel with feature selection:

O(|F |(k · u + N2) + knN) time

Note: in case of DNA sequences, for typical values of
k, n and N , maximum number of features |Σ|k � nN ,
i.e. u � nN , which gives substantial performance
improvement.
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Experimental results

Three data sets:
• Fish sequences (7 species, 56 barcodes)
• Astraptes dataset (12 species, 466 barcodes)
• Hesperiidae dataset (371 species, 2135 barcodes)

To measure performance of our methods we use
cross-validation (CV) error rates and ROC (Receiver
Operating Characteristic) scores
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Experimental results: classification
performance

Classification performance (accuracy of identification):
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Feature selection improves performance!
We observed more than 90% reduction in the number
of sequence features
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Comparison of running times

Mismatch kernel computation (k=5, m=1):
Barcode dataset Time/algorithm 1 Time/algorithm 2

Dataset 1
Astraptes
N=466, n=600

21 secs 47 minutes

Dataset 2
Hesperiidae
N=2135, n=600)

305 secs > 10 hrs

Algorithm 1 = new algorithm, algorithm 2 = old
mismatch algorithm
Note: machine configuration: 2.8Ghz CPU, 1GB RAM
Note: order of magnitude improvement
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Related work

• Work on exact match string kernels
[Leslie 02a, Vishwanathan 02]

• Work on kernels with inexact string matching
[Leslie 02b, Kuang 04]

• Work of [P.D.N. 03] on biological identification
through DNA barcodes
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Main results

• Showed efficiency of mismatch/spectrum kernels
as a sequence similarity measures

• Presented a method for efficient computation of
kernel matrices KN×N : a divide-and-conquer
algorithm for the (k,m)-mismatch kernel that
improves previously known bound on running time
and is more memory efficient and easy to
implement

• Using counting statistics of mismatch kernel, we
have extracted small subsets of important k-mers
in order to find most discriminative
regions/sequence features in the sequence
taxonomic group
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Conclusions

• The use of kernel-based approaches for DNA
barcoding resulted in a highly accurate and
scalable species identification method

• Mismatch/spectrum kernels proved to be very
efficient as sequence similarity measure

• have demonstrated that the use of feature
selection applied to the high dimensional space of
string sequence features can often result in
dramatic reduction in the number of features
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Thanks for listening
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Kernels with position information

• Fisher kernel [Jaakkola 00]
• each taxonomic group is modeled by profile

HMM
• each sequence is mapped to the space of fixed

dimensionality using profile

Feature selection proved to be very effective in case of
Fisher kernels: subsets of features induced after
feature elimination step indicate that there is a small set
of positions that can be used as a signature of each
class that places it apart from all other classes.
Unlike Fisher kernels, string kernels inherently contain
no positional information. One way to induce position
information is via context-specific kernels.
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