Fast motif selection for biological sequences

Pavel Kuksa and Vladimir Pavlovic
Department of Computer Science
Rutgers University
Piscataway, NJ 08854
{pkuksa,viadimir} @cs.rutgers.edu

Abstract—We consider the problem of identifying motifs,
recurring or conserved patterns, in the sets of biological
sequences. To solve this task, we present new deterministic
and exact algorithms for finding patterns that are embedded
as exact or inexact instances in all or most of the input
strings. The proposed algorithms (1) improve search efficiency
compared to existing exact algorithms by focusing search on
a selected set of potential motif instances, and (2) scale well
with the input length and the size of alphabet. Our algorithms
are orders of magnitude faster than existing exact algorithms
for common pattern identification. We evaluate our algorithms
on benchmark motif finding problems and real applications
in biological sequence analysis and show that they exhibit
significant running time improvements compared to the state-
of-the-art approaches.

Keywords-Tree searching, Algorithms, Sequences

I. INTRODUCTION

Finding motifs or repeated patterns in data is of wide
scientific interest [1], [2], [3], [4], with many applications in
genomic and proteomic analysis. The motif search problem
abstracts many important problems in analysis of sequence
data, where motifs are, for instance, biologically important
patterns. For example, elucidating motifs in DNA sequences
is a critical first step in understanding biological processes
as basic as the RNA transcription. There, the motifs can
be used to identify promoters, the regions in DNA that
facilitate the transcription. Finding motifs can be equally
crucial for analyzing interactions between viruses and cells
or identification of disease-linked patterns.

The task of motif finding (see e.g., [2]) for a given
set of sequences is to discover motifs and its instances
without prior knowledge of the consensus motif string and
the positions of its instances in the sequences (Figure 1).

sequences
(known)

) motif instances
motif (inexact copies -
(unknown) unknown)

Figure 1. The motif search problem.

For the purpose of this study, motifs are (short) patterns
that occur in an exact or approximate form in all or most of
the strings in a data set. Consider a set of input strings S of
size N = |S| constructed from an alphabet 3. The solution
for the (k,m,X, N)-motif finding problem (Figure 1) is the
set M of k-mers (substrings of length k), M C X¥, such

that each motif string a € M, |a| = k, is at Hamming
distance at most m from all (or almost all) strings s € S.

In this work, we focus on a deterministic, exhaustive
approach to motif search. Exhaustive motif finding ap-
proaches are guaranteed to report all instances of motifs
in a set of sequences, but are faced with the very high
complexity of such search. We present new deterministic and
exact algorithms (Section III) for finding common patterns
with the search complexity that scales well with the input
length and size of the alphabet. Proposed algorithms improve
motif search efficiency by focusing on the input instances
that are more likely to be motif instances as opposed to
using the entire input directly. Compared to existing exact
algorithms (e.g., [5], [6], [7]) our algorithms improve search
efficiency in the important cases of large-alphabet inputs
(e.g., protein alphabet, extended DNA alphabet, etc.) and
inputs of large length. As we show in the experiments,
using both synthetic and real biological data, our algorithms
are orders-of-magnitude faster than existing state-of-the-art
deterministic search algorithms, especially on large-alphabet
inputs (e.g., protein data). This result extends applicability of
the exact motif search algorithms to more complex problems
requiring analysis of biological sequence data modeled as
strings over large alphabets.

II. RELATED WORK

The problem of motif discovery has been studied exten-
sively over the past two decades [8]. Within an important
class of exhaustive methods (i.e. methods that are guaranteed
to report all motif instances), a number of approaches have
been proposed, including graph methods (WINNOWER) [2],
explicit trie traversal (MITRA) [5], voting algorithms [7],
suffix trees [9], [6], sorting and enumeration [10], etc.
Existing exhaustive algorithms use explicit exploration of
the motif space and require time proportional to the size
V(k,m)=>", (];)(|E| — 1) of the k-mer neighborhood
which consists of all k-length substrings at Hamming dis-
tance of at most m from a k-mer, which can lead to high
computational complexity as shown in Table I.

Voting algorithms proposed in [7] explore local neighbor-
hood sets V(k,m) (e.g., using trees of size O(k™|%|™))
of the input k-mers and use an indicator array V of the
maximum size |S|¥ to find motifs through voting. Each

Table I
EXACT ALGORITHMS FOR MOTIF SEARCH

Algorithm Time Complexity Space Complexity
SPELLER [9] O(nN?V(k,m)) O(nN?/w)
MITRA [5] O(knNV (k,m)) O(nNEk)
CENSUS [11] O(knNV (k,m)) O(nNk)
Voting [7] O(nNV(k m)) O(nV(m, k))
RISOTTO [6] O(nN V(k,m)) O(nN?)
PMS [10] O(n*NV(k,m)) O(n?N)

Notation: N-number of sequences, n-sequence length,
k - k-mer length, m-number of mismatches

length-k substring observed in the input gives one vote to all
of its V(k, m) neighbors. The substrings that occur in every
input string will receive N votes and will be included in the
output motif set M. The algorithm takes O (k™1 |S|nN)
time as it traverses neighborhood sets V' (k, m) of all k-mers
in the input.

One of the most efficient exact algorithms for motif
search, the mismatch tree (MITRA) algorithm [5], uses ef-
ficient trie traversal over all O(|X|¥) possible motif patterns
to find a set of motifs in the input strings. Compared to local
neighborhood searches in voting algorithms, this algorithm
efficiently traverses a single global tree of all O(|X|*) k-
mer patterns. The complexity of the trie-based traversal
algorithm for motif finding is O(k™*1|%|™nN). Note that
the algorithm essentially explores the neighborhood of all
O(nN) k-mers in the input to select motifs.

Another class of efficient exhaustive algorithms is based
on sorting and enumeration [10]. The PMSP algorithm
enumerates all possible neighboring k-mers for the first
string s; and outputs k-mers that occur in every string
with Hamming distance at most m, similar to the Voting
algorithms [7]. The PMSprune algorithm [10] employs a
more efficient search strategy to traverse the candidate space
and is an improvement, in the expected case, over the PMSP.

In this study, we focus on tree-based algorithms for
motif search. In particular, we consider global tree search
algorithms (as mismatch tree (MITRA) algorithms) and local
tree algorithms (as Voting algorithms) and show how the
search complexity can be significantly improved for both
approaches using fast candidate selection algorithms, which
we describe in Section III. We propose two motif search
algorithms with selection that use for search a single global
tree (Section III-A) or use local tree searches (Section III-B).

III. MOTIF SELECTION ALGORITHMS

Existing exhaustive algorithms typically (e.g., [5], [7],
[10]) use the entire input S (i.e. all the k-mers in the input)
and find motif by essentially exploring neighborhood sets of
every k-mer in the input. To improve their search complexity,
we propose selection-based approach to motif search that
uses a reduced set R C S which contains only k-mer
samples that are potential motif instances instead of all input
samples S. We obtain set R from S by removing all k-mer
samples that do not satisfy motif constraints, as described
below.

A necessary condition for a group of k-mers to have a
shared, common (k, m)-neighbor (motif) is that the Ham-

ming distance between any pair of k-mer patterns has to
not exceed 2m. This is true, since if some of the distances
exceed 2m, than corresponding pairs share no k-mers, and
if the common neighbor exists, then the pairwise distances
have to be at most 2m, otherwise the common neighbor
would not have existed.

We will use this condition to select k-mers from input S
that are potential motif instances and place them in set R. A
particular k-mer a in the input is a potential motif instance if
it is at Hamming distance at most 2m from each of the input
strings. All other k-mers that violate the above condition
cannot be instances of a motif and can be discarded (i.e.
using the reduced set R C S results in same output as in
case of using S).

At first, it seems that in order to obtain a set of k-mers
R at distance of at most 2m from every string one needs to
compute all O(n?N?) pairwise distances between input k-
mers and select k-mers at distance of at most 2m — which
would require quadratic running time. We will show next
how to obtain a reduced set of k-mers in time linear in the
input length n.

The reduced set R of potential motif instances, i.e. k-mers
at distance of at most 2m from each of the input strings,
can be obtained using our linear time selection algorithm
(Algorithm 1).

Algorithm 1 Selection algorithm

Input: set S of k-mers with associated sequence index L,
distance parameter d (d = 2m)

Output: set R of k-mers at distance of at most d from each
input string

1. TIteratively pick d positions and remove from the k-

mers symbols at the corresponding positions to obtain a

set of (k — d)-mers.

2. Use counting sort to order (lexicographically) the

resulting set of (k — d)-mers.

3. Scan the sorted list to create the list of all sequences

in which k-mers appear using sequence index L.

4. Output the k-mers that appear in every input string.

To select the valid k-mers (i.e. a set of potential motif
instances), we use multiple rounds of count sort by removing
iteratively 2m out of k positions and sorting the resulting
sets of (k—2m)-mers. A k-mer is deemed a potential motif
instance if it matched at least one k-mer from each of
the other strings in at least one of the sorting rounds. The
purpose of sorting is to group the same k-mers together; note
that (k — 2m)-mers corresponding to k-mers at distance of
at most 2m will match exactly. Using a simple linear scan
over the sorted list of all input k-mers, we can find the set of
potential motif instances and construct R. This algorithm is
outlined in Algorithm 1. As we will see in the experiments
(Section 1V), the selection using Algorithm 1 significantly
reduces the number of k-mer instances considered by the
motif algorithm and improves its search efficiency. The

number of selected k-mers, i.e. the size of R, is small,
especially for large-alphabet inputs (e.g., sequences over
protein alphabet). This can be seen from the expected case
analysis. For this purpose we assume that sequences are gen-
erated from a background process with few motifs implanted
in the background-generated sequences. Assuming an iid
background model with equiprobable symbols, the expected
number of k-mers in the input of N strings of length n that
match each of the N strings with up to 2m mismatches by
chance is

E[Rp] = %" 1 = (1 = pr2m)™)¥

where py, 2p, is the probability that two randomly selected
k-mers are at distance of at most 2m. For instance, for a set
of N = 20 protein sequences (sampled from alphabet || =
20) of length n = 600 the expected number of potential
motifs of length £ = 13, m = 4 by chance is about 8, with
p13,s = 2.9 -107%. Given ¢ implanted motif instances, the
average number of k-mers that will be selected from n/N
input samples, or the expected size of R, is

E[R]=t+nN(l~ (1~ pr2m)’) + E[Rz]

Since ¢ and p are typically small, for small pn, E[R] < nN,
the number of k-mers in the input. In the protein example
above the expected size of R is about 1 + 3 + 8 = 12 for
t = 1, which is orders of magnitude smaller than nN =
12000, signifying the importance of creating R first. This is
empirically demonstrated in Section IV.

Using reduced set R of k-mers, the actual search com-
plexity after the selection step (Algorithm 1) becomes sub-
linear in the input size (since the number of selected k-mers
R = |R| is much smaller than input length O(nN)). For
instance, the search complexity of the trie-based algorithms
(e.g., [5]) can be reduced to O((,})knN + RV (k,m))
instead of O(knNV (k, m)), where V (k,m) is O(K™|Z|™).
This will lead to a more efficient search especially for large-
alphabet since a possibly large input S of size O(nN)
is replaced with a smaller set R C S of potential motif
instances, i.e. k-mers that match with up to 2m mismatches
every string in the input.

We next present two tree-based motif search algorithms
that use selection (Algorithm 1) to improve search efficiency.
We will evaluate both algorithms in Section IV.

A. Mismatch trie algorithms with selection

We use selection (Algorithm 1) to obtain reduced set R
of potential motif instances. This set is then used in the tree
search. The tree search follows depth first search strategy
(as in mismatch trie [5]) with each node corresponding to
a substring (prefix) formed by the characters selected from
the alphabet set ¥. A search proceeds to the next level only
if the set of input k-mers matching the current substring
contains instances from the specified number of strings (e.g.,
all N strings). The overall complexity of this algorithm is

O((Q’fn) knN + R - V(k,m)) and is an improvement over
O(knN -V (k,m)) complexity of the trie-based algorithms
(e.g., [5], [11D).

B. Local tree algorithms with selection

The algorithm uses potential motif instances (set R), as
starting points for neighborhood sets traversals using depth
first strategy, similar to the neighborhood search in voting
algorithms [7] and PMS algorithms [10]. Each node in
the tree (with the maximum depth m) corresponds to a
particular k-length substring from the (k,m)-neighborhood.
The node is expanded further only if the set of matching
k-mers contains instances from the specified number of
input strings (e.g., IV strings). The overall complexity of
this algorithm is O((an)an + R - V(k,m)R). We note
that this improves search complexity as we will show in the
experimental section.

IV. EXPERIMENTAL EVALUATION

We test our algorithms on the planted motif problem
commonly used as a benchmark for evaluating performance
of motif finding algorithms [5], [10], [2].

A. Benchmark motif search problems

A planted motif problem is the task where synthetic motifs
are injected in otherwise motif-less strings [2]. For this
problem, we follow the standard setting used in previous
studies [2], [5], [10] and synthesize N = 20 random strings
of length n = 600 using iid, uniformly distributed symbols
from an alphabet of size |X|. We then embed a copy (with
up to m substitutions at random positions) of the motif at
a random location in every string. The task is to identify
motifs hidden in the input.

1) Full tree algorithms: We use various challenging
instances of the planted motif problem and compare in
Table II running time of the mismatch tree algorithm
(MITRA) with the mismatch tree (S-MITRA) that uses
candidate selection (Algorithm 1). All the running time
measurements are obtained on a machine with a 3.0GHz
CPU. We observe significant improvements in running time
using our algorithm with candidate selection. For example,
for the relatively small protein alphabet (|%| = 20) our
algorithm improves running time by a factor of 103 on the
(13,4) motif problem instance compared to the mismatch
trie. The difference in running time increases with the size
of the alphabet. Large alphabets can, for instance, arise when
encoding the 3D protein structure, a necessity in cases when
sequences share little similarity at primary level. We also
show in Table II the number of k-mer instances |R| selected
by the algorithm (out of Nn = 20 - 600 = 12000 input
samples). We observe that selection consistently results in
much smaller sets compared to the entire set S.

In Figure 2 we illustrate efficiency of the candidate
selection by Algorithm 1 and show the ratio between the

Table II
RUNNING TIME (S) ON CHALLENGING INSTANCES OF PLANTED MOTIF
PROBLEMS (n=600, N=20)

(k,m,]X[) [MITRA S-MITRA [[Voting S-Voting | [R]
9,2,20) 4.73 0.4338 70.5 0.4656 39
(9,2,50) 89.8 0.4359 161.5 0.4721 39
(9,2,100) 266 0.4423 311.3 0.5053 39
(11,3,20) 307 1.71 84.1 1.6866 42
(11,3,50) 12296 1.76 193.8 1.7282 42
(11,3,100) - 1.73 375 1.8285 42
(13,4,20) 9524 7.44 98.7 5.6239 65
(13,4,50) 685015 5.26 227.4 4.7589 38
(13,4,100) - 5.27 4427 4.9562 38
(15,5,20) - 120 118.5 13.5 97
(15,5,50) - 883 312.5 17.2 90
(15,5,100) - 318 714.3 359 65
(17,6,20) - 4549 152.9 46.3 86
(17,6,50) - 51088 355 84.1 85
(17,6,100) - 130265 816 257.8 85

total number of the k-mers in the input and the number of k-
mers selected from the input as potential motif instances. We
observe that across different input sizes, selection reduces
the sample size by a factor of 102 — 10, As expected from
our theoretical analysis, we also observe that our algorithm
scales linearly with the input sequence length (Table III).

10° T

ratio (input size) / (number of selected instances)
3
T

10°

1 1 1 1 |
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
sequence length, n

Figure 2. Ratio between the input size (n/V) and the number of selected
sample k-mers (R = |R|) as a function of the input length and alphabet

size (planted motif problem, &k = 13, m = 4).
Table T

MISMATCH TREE (S-MITRA) RUNNING TIME AS A FUNCTION OF THE
SEQUENCE LENGTH n (PROTEIN ALPHABET, |X| = 20)

n (13420) [R] | (155200 [R|
600 74 65 120 97
1000 137 76 144 74
2000 17.9 37 217 80
3000 364 91 258 94

2) Voting (local neighborhood tree) algorithms: Simi-
lar to the global tree algorithm in the previous section,
we observe significant search efficiency improvements in
the case of the local neighborhood tree search. Results
in Table II suggest that using our algorithm (S-Voting)
with candidate selection (Algorithm 1) significantly reduces
running time compared to the standard voting algorithms that
use the entire input. For instance, we observe a factor 20-100
running time improvements on protein data (|X| = 20).

V. CONCLUSIONS

We presented new deterministic and exhaustive algorithms
for finding motifs, the common patterns in sequences. Our

algorithms use fast input candidate selection to improve mo-
tif search efficiency by focusing on potential motif instances.
Proposed algorithms reduce computational complexity of
the current algorithms and demonstrate strong running time
improvements, especially in an important case of sequences
with large alphabet sizes (e.g., protein data). These im-
provements make exact combinatorial algorithms for finding
motifs a practical alternative for general sequence analysis
tasks. The proposed algorithms can be readily applied to
other challenging problems in sequence analysis and mining.

REFERENCES

[1] E. P. Xing, M. L. Jordan, R. M. Karp, and S. Russell,
“A hierarchical Bayesian Markovian model for motifs in
biopolymer sequences,” in Advances in Neural Information
Processing Systems. MIT Press, 2003, pp. 200-3.

[2] P. A. Pevzner and S.-H. Sze, “Combinatorial approaches to
finding subtle signals in dna sequences,” in Proceedings of
the Eighth International Conference on Intelligent Systems
for Molecular Biology. AAAI Press, 2000, pp. 269-278.

[3] J.-M. Fellous, P. H. E. Tiesinga, P. J. Thomas, and T. J.
Sejnowski, “Discovering Spike Patterns in Neuronal Re-
sponses,” J. Neurosci., vol. 24, no. 12, pp. 2989-3001, 2004.

[4] N. Jojic, V. Jojic, B. Frey, C. Meek, and D. Heckerman,
“Using “epitomes” to model genetic diversity: Rational design
of HIV vaccine cocktails,” in Advances in Neural Information
Processing Systems 18, Y. Weiss, B. Scholkopf, and J. Platt,
Eds. Cambridge, MA: MIT Press, 2006, pp. 587-594.

[5] E. Eskin and P. A. Pevzner, “Finding composite regulatory
patterns in DNA sequences,” Bioinformatics, vol. 18, no.
suppll, pp. S354-363, 2002.

[6] N. Pisanti, A. M. Carvalho, L. Marsan, and M.-F. Sagot,
“RISOTTO: Fast extraction of motifs with mismatches,” in
LATIN, 2006, pp. 757-768.

[7] E. Y. L. Chin and H. C. M. Leung, “Voting algorithms for
discovering long motifs,” in APBC, 2005, pp. 261-271.

[8] M. Tompa, N. Li, T. Bailey, G. Church, and B. D. Moor, “As-
sessing computational tools for the discovery of transcription
factor binding sites,” Nature Biotechnology, Jan 2005.

[9] M.-F. Sagot, “Spelling approximate repeated or common
motifs using a suffix tree,” in LATIN ’98: Proceedings of the
Third Latin American Symposium on Theoretical Informatics.
London, UK: Springer-Verlag, 1998, pp. 374-390.

[10] J. Davila, S. Balla, and S. Rajasekaran, “Fast and practical
algorithms for planted (1, d) motif search,” IEEE/ACM Trans-
actions on Computational Biology and Bioinformatics, vol. 4,
no. 4, pp. 544-552, 2007.

[11] P. A. Evans and A. D. Smith, “Toward optimal motif enu-
meration,” in WADS, 2003, pp. 47-58.

[12] C. Lawrence, S. Altschul, M. Boguski, J. Liu, A. Neuwald,
and J. Wootton, “Detecting subtle sequence signals: a Gibbs
sampling strategy for multiple alignment,” Science, vol. 262,
no. 5131, pp. 208-214, 1993.

[13] A. E. Kister, A. S. Fokas, T. S. Papatheodorou, and I. M.
Gelfand, “Strict rules determine arrangements of strands in
sandwich proteins,” Proceedings of the National Academy of
Sciences of the United States of America, vol. 103, no. 11,
pp- 4107-4110, 2006.

[14] “Super-Secondary
http://binfs.umdnj.edu/sssdb/.

Structure Database,”

