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Abstract

Recent studies in protein sequence analysis have lever-

aged the power of unlabeled data. For example, the pro-

file and mismatch neighborhood kernels have shown sig-

nificant improvements over classifiers estimated under the

fully supervised setting. In this study, we present a princi-

pled and biologically motivated framework that more effec-

tively exploits the unlabeled data by only utilizing regions

that are more likely to be biologically relevant for better

prediction accuracy. As overly-represented sequences in

large uncurated databases may bias kernel estimations that

rely on unlabeled data, we also propose a method to remove

this bias and improve performance of resulting classifiers.

Combined with a computationally efficient sparse family of

string kernels, our proposed framework achieves state-of-

the-art accuracy in semi-supervised protein remote homol-

ogy detection on three large unlabeled databases.

1 Introduction

In this work we address the problem of predicting protein

remote homology using only the primary sequence. This is

a common and critical task that arises when other sources of

information such as the secondary or tertiary structure are

not available. Remote homology detection settings, such

as the successful kernel-based methods [5, 8], are typically

characterized by few positive training sequences accompa-

nied by a large number of negative training examples. The

lack of positive training examples may lead to sub-optimal

classifier performance, prompting the need for expansion

of the training set. However, enlarging the set by experi-

mentally labeling the sequences is costly. Instead, one typi-

cally leverages unlabeled data to refine the decision bound-

ary. State-of-the-art methods such as the profile [6] and the

mismatch neighborhood kernel [11] both show significant

gains in performance resulting from the use of these large

but unlabeled data sources. However, the need for addi-

tional reduction in computational complexity and improve-

ment in predictive accuracy hinders the widespread use of

these powerful computational tools.

In this study, we propose a systematic and biologically

motivated approach that more efficiently uses the unlabeled

data and further develops the crucial aspects of neighbor-

hood and profile kernels. The proposed framework, the

region-based neighborhood method (Sec. 3.1), utilizes the

unlabeled sequences to construct a more accurate classifier

by focusing on the significantly similar sequence regions

that are more likely to be biologically relevant as opposed

to using whole sequences directly. As overly-represented

sequences may lead to performance degradation by bias-

ing kernel estimations based on unlabeled data, we pro-

pose an effective clustering method in Sec. 3.2 that im-

proves performance of the resulting classifiers under the

semi-supervised learning setting. Our experimental results

show that the framework we propose yields significantly

better performance compared to the state-of-the methods

and also demonstrates significantly improved running times

on large unlabeled datasets.

2 Background

The spectrum kernel family has become one of the most

accurate tools for protein homology detection. Spectral

methods rely on fixed-length representations or features

Φ(X) of arbitrary long sequences X modeled as the spec-

tra of short substrings (k-mers) contained in the sequences.

These features are subsequently used to define the mea-

sure of similarity, or the kernel, K(X, Y ) = Φ(X)′Φ(Y )
between pairs of sequences (X, Y ). Remote homology

settings rely on inexact matching of those representations

which can be accomplished using the mismatch(k,m)1 ker-

nel family [8]. Traditional mismatch kernels do not take

into account any spatial information contained in k-mers

which may be critical for accurate modeling of inexact rela-

tionships. More recently, Kuksa et al. introduced the sparse

1k denotes the k-mer length and m < k is the maximal number of

allowed mismatches.



spatial sample kernels (SSSK) [7] which model the intrin-

sic spatial information in substrings of X . In particular, they

consider substrings of form S = a1
d1↔ a2,

d2↔, · · · ,
dt−1

←→ at

(a1 separated by d1 characters from a2, a2 separated by d2

characters from a3, etc.) and computationally efficiently

compute their spectra and kernels. This representation leads

to more accurate elucidation of remote homologies.

Nevertheless, inexact matchings are typically insuffi-

cient for ascertaining accurate relationship among remote

homologs. A role in establishing those links can be ful-

filled by unlabeled data. The unlabeled sequences serve as

conduits for propagating information between distant ho-

mologs. The families of profile [6] kernels, the sequence

neighborhood kernels [11] and the SSSK [7] achieve state-

of-the-art performance by leveraging this source of infor-

mation. All of the methods rely on the notion of sequence

neighborhoods N(X), the sets of sequences most similar

to any particular sequence X . N(X) is typically estab-

lished using a scoring function s(X, X ′), such as the e-

value, yielding N(X) = {X ′ : s(X, X ′) ≤ δ} for a fixed

threshold δ. The profile kernels use this neighborhood in-

formation to construct probabilistic profiles that are subse-

quently used for inexact matching. The sequence neighbor-

hood kernels, on the other hand, use the neighborhoods to

smooth the sequence features Φorig(X),

Φnew(X) =
1

|N(X)|

∑

X′∈N(X)

Φorig(X ′) (1)

for each training and testing sequence. Weston et al. in [11]

and Kuksa et al. in [7] show that the discriminative power

of the classifiers improve significantly using this neighbor-

hood information. However, as we show in the subsequent

sections, the way N(X) is constructed impacts in a large

way the accuracy of the neighborhood methods.

3 Proposed methods

In Sec. 3.1, we first propose a new framework for ex-

tracting only relevant information from unlabeled data in a

semi-supervised learning setting. We then extend the frame-

work in Sec. 3.2 using clustering to reduce computational

complexity and data redundancy, which, as we will show

experimentally, further improves the speed and accuracy of

resulting classifiers.

3.1 Extracting relevant information from
the unlabeled sequence database

Under a semi-supervised learning setting, our goal is to

recruit neighbors of training and testing sequences to con-

struct N(X) and use these intermediate neighbors to es-

tablish similarity between the remotely homologous pro-

teins, which bear little to no similarity on the primary se-

quence level. As a result, the quality of the intermediate

neighboring sequences is crucial for detecting remote ho-

mologues. However, in many sequence databases, multi-

domain protein sequences are abundant and such sequences

might be similar to several unrelated single-domain se-

quences, as noted in [11]. Direct use of these long se-

quences may falsely establish similarities among unrelated

sequences since these unlabeled sequences carry excessive

and unnecessary features. In contrast, very short sequences

often induce very sparse representation and therefore have

missing features. Explicit use of sequences that are too

long or too short may bias the averaged neighborhood rep-

resentation and compromise the classifier performance. A

possible remedy is to discard neighboring sequences whose

lengths are substantially different from the query (training

or test) sequence. For example, Weston et al. in [11] pro-

posed to only capture neighboring sequences with maximal

length of 250 (for convergence purposes). Unfortunately,

such practice may not offer a direct and meaningful bio-

logical interpretation. Moreover, removing neighboring se-

quences purely based on their length may discard those that

carry crucial information and, as we will show in Sec. 4,

degrade classification performance.

To more effectively use the unlabeled neighboring se-

quences, we propose to extract the significantly similar se-

quence regions from the unlabeled neighbors since these re-

gions are more likely to be biologically relevant. Such sig-

nificant regions are commonly reported in search methods

such as BLAST [2], PSI-BLAST [1] and different HMM

methods. We illustrate the proposed procedure using PSI-

BLAST as an example in Figure 1. In the figure, given the

query sequence, PSI-BLAST reports sequences (hits) con-

taining substrings that exhibit statistically significant simi-

larity with the query sequence. For each reported signifi-

cant hit, we extract the most significant region and recruit

the extracted sub-sequence as a neighbor of the query se-

quence. Thus, the region-based neighborhood R(X) con-

tains the extracted significant sequence regions, not the

whole neighboring sequences of the query sequence X ,

i.e. R(X) = {x′ : s(X, X ′) ≤ δ}, where x′ ⊑ X ′

is the most statistically significant matching region of an

unlabeled neighbor X ′. The proposed region-based neigh-

borhood method, as demonstrated in Sec. 4, will allow us

to more efficiently leverage the unlabeled data and signifi-

cantly improve the classifier performance.

We summarize four competing methods for leveraging

unlabeled data during training and testing under the semi-

supervised learning setting below and experimentally com-

pare the methods in Sec. 4:

• Unfiltered: all neighboring sequences are recruited and

N(X) is established on the whole-sequence level.

• Extracting the most significant region: for each re-
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Figure 1. Extracting only statistically signifi-

cant regions (red/light color) from the hits

cruited neighboring sequence, we extract only the most

significantly similar sequence region and establish the

region-based neighborhood R(X) on a sub-sequence

level; such sub-sequence is more likely to be biologi-

cally relevant to the query.

• Filter out long and short sequences: for each unfil-

tered neighborhood N(X), we remove all sequences

X ′ ∈ N(X) if TX′ > 2TX or TX′ < TX

2 , where TX

is the length of sequence X . In essence, this method

may alleviate the effect of the excessive and missing

features in the unfiltered method by discarding the se-

quences whose length fall on the tails of the histogram.

• Maximal length of 250 [11]: for each sequence, we

first construct N(X), then remove all neighboring se-

quences X ′ ∈ N(X) if TX′ > 250.

3.2 Clustered Neighborhood Kernels

The smoothing operation in Eq. 1 is susceptible to overly

represented neighbors in the unlabeled data set since the

presence of replicates in N(X) biases the average towards

such sequences. Large uncurated sequence databases usu-

ally contain abundant duplicate sequences. Some dupli-

cates, such as those with secondary accession numbers in

Swiss-Prot, can be easily identified and removed. However,

two other types of duplication are harder to identify: the

sequences that are nearly identical and the sequences that

contain substrings sharing high sequence similarity and are

significant hits to the query sequence. Pre-processing the

data prior to kernel computations is thus necessary to re-

move such bias and improve performance.

In this study we propose the approach of clustered neigh-

borhood kernels. Clustered neighborhood kernels further

simplify R(X) to obtain a reduced region neighborhood

R∗(X) ⊆ R(X) without duplicate or near-duplicate re-

gions (i.e. no pair of sequence regions in R∗(X) shares

more than a pre-defined sequence identity level). The sim-

plification is accomplished by clustering the set R(X). The

clustered region-based neighborhood kernel between two

sequences is then

K ′(X, Y ) =
∑

x∈R∗(X)

∑

y∈R∗(Y )

K(x, y)

|R∗(X)||R∗(Y )|
. (2)

Clustering typically incurs quadratic complexity in the

number of sequences [2, 9]. Moreover, pre-clustering the

unlabeled database may result in the loss of neighboring se-

quences, further degrading the classifier performance, see

Sec. 5.2. To address the two issues we propose to post-

cluster each reported neighbor set one at a time. For ex-

ample, the union of all neighbor sets induced by the NR

unlabeled database contains 129, 646 sequences, while the

average size of the neighbor sets is only 115.

4 Experiments

We present experimental results for protein remote ho-

mology detection under the semi-supervised setting on the

SCOP 1.59 [10] benchmark data set [11]. The data set con-

tains 54 binary classification problems, each simulating the

remote homology detection problem by completely hold-

ing out a whole family for testing the super-family classi-

fier. We use three unlabeled sequence databases, some con-

taining abundant multi-domain protein sequences and du-

plicated or overly represented (sub-)sequences: PDB [3]2

(17,232 sequences), Swiss-Prot3 (101,602 sequences), and

the non-redundant (NR) sequence database (534,936 se-

quences). To adhere to the true semi-supervised setting, we

remove all sequences in the unlabeled data sets identical to

any test sequences.

The unfiltered N(X) is constructed using two PSI-

BLAST iterations on the unlabeled database with query X

and the selection threshold based on e-values ≤ .05. Next

for each neighboring sequence, we extract the most sig-

nificant region (lowest e-value) to form the sub-sequence

neighborhood R(X). Finally, we cluster R(X) at 70% se-

quence identity level using cd-hit4 [9], and form the clus-

tered neighborhood R∗(X). The neighborhood kernel is

then obtained using the smoothed representations (Eq. 1)

by substituting N(X) with R(X) or R∗(X).
We evaluate all methods using the Receiver Operat-

ing Characteristic (ROC) and ROC50 [4] scores. In all

experiments, we normalize the kernel values K(X, Y )5

and use an existing SVM implementation SPIDER6 with

default parameters. For the sparse spatial sample ker-

nel, we use the triple(1,3) (k=1, t=3, d=3), i.e. fea-

tures are triples of monomers, and for the mismatch ker-

nel, we use k=5, m=1. More details and supplementary

data can be found at http://seqam.rutgers.edu/

projects/bioinfo/region-semiprot/.

2As of Dec. 2007.
3Version used in [11] for comparative analysis of performance.
4http://www.cd-hit.org
5K′(X, Y ) = K(X, Y )/

p

K(X, X)K(Y, Y ).
6http://www.kyb.tuebingen.mpg.de/bs/people/spider
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4.1 Experiments with triple(1,3)

In the upper panel of Figure 2, we show the ROC50

plots of all four competing methods, with post-clustering,

using the triple(1,3) kernel on different unlabeled sequence

databases. In each figure, the horizontal axis corresponds to

a ROC50 score, and the vertical axis denotes the number of

experiments, out of 54, with equal or higher ROC50 score.

In all cases, we observe the ROC50 curves of the region-

based method (lines with ’+’ signs) show strong dominance

over those of other methods. Furthermore, we observe in

Figures 2(a) and 2(b), discarding sequences based on the

sequence length (the two colored dashed lines) degrades

the performance of the classifiers, compared to the baseline

(unfiltered) method (solid lines). This suggests that longer

unlabeled sequences carrying crucial information for infer-

ring the class labels of the test sequences are discarded.

We also summarize performance measures for all com-

peting methods in Table 1. For each method, we also

report the p-value of the Wilcoxon Signed-Rank test on

the ROC50 scores against the unfiltered (baseline) method.

Our region-based method strongly outperforms other com-

peting methods and consistently shows statistically signifi-

cant improvements while the other two methods suggest no

strong evidence of improvement. We also note that cluster-

ing significantly improves the performance of the unfiltered

method (p-value < .05 in all unlabeled datasets) and of-

fers noticeable improvements for the region-based method

on larger datasets (e.g. NR).

Table 1. Experimental results for all compet-

ing methods using the triple(1,3) kernel.

neighborhood clustered neighborhood

dataset ROC ROC50 p-value ROC ROC50 p-value

PDB

unfiltered .9476 .7582 - .9515 .7633 -

region .9708 .8265 .0069 .9716 .8246 .0045

no tails .9443 .7522 .5401 .9472 .7559 .5324

max length .9471 .7497 .4407 .9536 .7584 .5468

Swiss-Prot

unfiltered .9245 .6908 - .9464 .7474 -

region .9752 .8556 2.46e-04 .9732 .8605 1.5e-03

no tails .9361 .6938 .8621 .9395 .7160 .6259

max length .9300 .6514 .2589 .9348 .6817 .1369

NR

unfiltered .9419 .7328 - .9556 .7566 -

region .9824 .8861 1.08e-05 .9861 .8944 2.2e-05

no tails .9575 .7438 .6640 .9602 .7486 .8507

max length .9513 .7401 .8656 .9528 .7595 .8696

4.2 Experiments with mismatch(5,1)

In the lower panel of Figure 2, we show the ROC plots

of all four competing methods, with post-clustering, using

the mismatch(5,1) kernel on different unlabeled sequence

databases. We observe that the ROC50 curves of the region-

based method show strong dominance over those of other

competing methods. In Figures 2(e) and 2(f), we again ob-

serve the effect of filtering out unlabeled sequences based

on the sequence length: longer unlabeled sequences car-

rying crucial information for inferring the label of the test

sequences are discarded and therefore the performance of

the classifiers is compromised. We summarize performance

measures on all competing methods in Table 2. The region-

based method again shows statistically significant improve-

ment compared to the unfiltered and other methods. Similar

to the triple kernel, we also observe significant improve-

ments for the unfiltered method with clustered neighbor-

hood on larger datasets.

Table 2. Experimental results on all compet-

ing methods using the mismatch(5,1) kernel.

neighborhood clustered neighborhood

dataset ROC ROC50 p-value ROC ROC50 p-value

PDB

unfiltered .9389 .7203 - .9414 .7230 -

region .9698 .8048 .0075 .9705 .8038 .0020

no tails .9379 .7287 .9390 .9378 .7301 .7605

max length .9457 .7359 .4725 .9526 .7491 .3817

Swiss-Prot

unfiltered .9253 .6685 - .9378 .7258 -

region .9757 .8280 .0060 .9773 .8414 .0108

no tails .9290 .6750 .9813 .9344 .6874 .5600

max length .9185 .6094 .1436 .9223 .6201 .0279

NR

unfiltered .9475 .7233 - .9544 .7510 -

region .9837 .8824 1.7e-04 .9874 .8885 1.2e-04

no tails .9554 .7083 .7930 .9584 .7211 .7501

max length .9508 .7421 .7578 .9518 .7613 .9387

4.3 Comparison with other state-of-the-
art methods

In Table 3, we compare our proposed methods on two

string kernels (triple and mismatch) against the profile ker-

nel, the state-of-the-art method. For each unlabeled data

set, we highlight the methods with the best ROC50 scores.

In almost all cases, the region-based method with clustered

neighborhood demonstrates the best performance. More-

over, the ROC50 scores of the triple and mismatch ker-

nels using regions strongly outperform those of the profile

kernel. We note that previous studies [6, 11] suggest that

the profile kernel outperforms the mismatch neighborhood

kernel. Moreover, as shown in [6], to improve the accu-

racy of the profile kernels, one needs to increase the com-

putationally demanding PSI-BLAST iterations. Using the

4
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Figure 2. ROC50 plots of four competing methods using the triple-(1,3) (top) and mismatch-(5,1) (bot-

tom) kernels with PDB, Swiss-Prot and NR as unlabeled databases. The ROC50 curves of the region-

based neighborhood method consistently show strong dominance over all competing methods.

region-based neighborhood with only 2 PSI-BLAST itera-

tions both the mismatch and spatial neighborhood kernels

achieve results better than the best profile kernels with 5
PSI-BLAST iterations [6].

Table 3. Comparison of performance (ROC50)

against the state-of-the-art methods.

method PDB Swiss-Prot NR

triple(1,3) .7582 .6908 .7327

triple(1,3), region .8265 .8556 .8861

triple(1,3), region, clustering .8246 .8605 .8944

mismatch(5,1) .7203 .6685 .7233

mismatch(5,1), region .8048 .8280 .8824

mismatch(5,1), region, clustering .8038 .8414 .8885

profile(5,7.5) .7205 .7914 .8151

5 Discussion

We further discuss the benefits of extracting only statis-

tically significant regions from the neighboring sequences

in Sec. 5.1 and elaborate on the role of post-clustering in

Sec. 5.2

5.1 Motivation for region extraction

Figure 3 illustrates the benefit of extracting only statisti-

cally significant regions from the unlabeled sequences. In

the figure, colors indicate membership: yellow (shaded)

represents the positive class and green (pattern) the negative

class. The arcs indicate (possibly weak) similarity induced

by shared features (black boxes) and absence of arcs indi-

cates no similarity. Sequences sharing statistically signifi-

cant similarity are more likely to be evolutionarily related

and therefore to belong to the same superfamily. As can

be seen from the figure, the positive training and test se-

quences share no features and therefore no similarity; how-

ever, the unlabeled sequence shares some features with both

sequences in the reported region, which is very likely to be

biologically related to both positive sequences. Via this un-

labeled sequence, the similarity between the two positive

sequences is established. In contrast, if the whole unla-

beled sequence is recruited as a neighbor, the similarity be-

tween the positive training and negative test sequences will

be falsely established by the irrelevant regions, resulting in

poor classifier performance.

One example in the SCOP 1.59 dataset that demon-
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strates this behavior is the target family EGF-type mod-

ule under the EGF/Laminin superfamily, Knottins fold and

small proteins class. In the experiment, we observe an un-

labeled sequence in Swiss-Prot (ID Q62059) sharing sta-

tistically significant similarity to the positive training, posi-

tive test, and negative test sequences. Swiss-Prot annotation

states that this protein sequences contain the C-type lectin,

Immunoglobulin-like V-type, link and sushi (CCP/SCR) do-

mains. Without region extraction, the ROC50 scores are

0.3250 and 0.3292 under the triple and mismatch kernels.

By establishing the neighborhood based on the extracted re-

gions, the ROC50 scores improve to 0.9464 and 0.9664.

? ?

+ training

+ test - test

unlabeled sequence

…

Figure 3. The importance of only extracting

relevant region from neighboring sequences

(middle) for inferring sequence labels (see

text for more details).

5.2 The role of clustered neighborhoods

In Sec. 3.2, we propose to post-cluster each sequences

neighbor set one at a time, as opposed to pre-clustering the

union of all neighbor sets or the whole unlabeled sequence

database. In this section, we further illustrate the benefits

of post-clustering: improvement in performance as well as

reduced storage and running time for classification.

We first show the difference between pre- and post-

clustering using the PDB database. For the triple(1,3)

neighborhood kernel, the ROC-50 scores for pre-/post- clus-

tering are .8122 and .8246 with a border-line significant p-

value of .1248. For the mismatch(5,1) kernel, the ROC-50

scores for pre-/post- clustering are .7836 and .8038 with a

significant p-value of .0853. Potentially useful neighbors

shared by two sequences might be removed during pre-

clustering and not included in the neighbor set which can

result in worse performance compared to post-clustering.

In addition to improving classification accuracy, per-

forming clustering on the neighbor sets may also lead

to substantial reduction in computational time. Post-

clustering on the non-redundant sequence database takes

approximately 120 seconds and on average reduces the

neighborhood size in half (on NR, the average neighbor-

hood sizes are |N(X)|=|R(X)|=115 without clustering and

|R∗(X)|=67 with clustering). We also observe that our pro-

posed framework reduces the running time by three folds.

6 Conclusion

We propose a systematic and biologically motivated ap-

proach for extracting relevant information from unlabeled

sequence database to more efficiently leverage the power of

the unlabeled data under the semi-supervised learning set-

ting. We also propose the use of the clustered neighborhood

kernels to improve the classifier performance and remove

the kernel estimation bias caused by overly-represented se-

quences in large uncurated databases. Combined with two

state-of-the-art string kernels (spatial and mismatch), our

framework significantly improves accuracy and achieves

the state-of-the-art performance on semi-supervised protein

remote homology detection while exhibiting significant im-

provement in running time. Our approach can be readily

extended to other challenging sequence analysis tasks, such

as fold prediction, clustering and localization.
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